如何用解线性方程组的方法求矩阵的逆
1个回答
展开全部
设A是一个n 阶可逆矩阵,E是n阶单位矩阵,X是一个n乘n的未知矩阵,
解矩阵方程AX=E就得到A的逆矩阵.
这相当于解n个方程组,每一个方程组都是n元线性方程组.
这n个方程组是:
Ax=(1,0,0,...,0,0)^T (这个方程组的解就是X的第1列)
Ax=(0,1,0,...,0,0)^T (这个方程组的解就是X的第2列)
.
Ax=(0,0,0,...,0,1)^T (这个方程组的解就是X的第n列)
解矩阵方程AX=E就得到A的逆矩阵.
这相当于解n个方程组,每一个方程组都是n元线性方程组.
这n个方程组是:
Ax=(1,0,0,...,0,0)^T (这个方程组的解就是X的第1列)
Ax=(0,1,0,...,0,0)^T (这个方程组的解就是X的第2列)
.
Ax=(0,0,0,...,0,1)^T (这个方程组的解就是X的第n列)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
东莞大凡
2024-11-14 广告
2024-11-14 广告
标定板认准大凡光学科技,专业生产研发厂家,专业从事光学影像测量仪,光学投影测量仪.光学三维测量仪,光学二维测量仪,光学二维测量仪,光学三维测量仪,光学二维测量仪.的研发生产销售。东莞市大凡光学科技有限公司创立于 2018 年,公司总部坐落于...
点击进入详情页
本回答由东莞大凡提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询