(1)已知x+y=2,xy=1,求y+1/x+1+x+1/y+1的值
(2)式子a-b/(b-c)(c-a)+b-c/(a-b)(c-a)+c-a/(a-b)(b-c)的值能否为0?为什么?...
(2)式子a-b/(b-c)(c-a)+b-c/(a-b)(c-a)+c-a/(a-b)(b-c)的值能否为0?为什么?
展开
2个回答
展开全部
解:
1.
x+y=2 (x+1)+(y+1)=2+2=4
xy=1 (x+1)(y+1)=xy+(x+y)+2=1+2+2=5
(y+1)/(x+1)+ (x+1)/(y+1)
=[(x+1)²+(y+1)²]/[(x+1)(y+1)]
=[(x+1+y+1)²-2(x+1)(y+1)]/[(x+1)(y+1)]
=(4²-2×5)/5
=6/5
2.
分式有意义,a-b≠0,b-c≠0,c-a≠0
(a-b)/[(b-c)(c-a)]+(b-c)/[(a-b)(c-a)]+(c-a)/[(a-b)(b-c)]
=[(a-b)²+(b-c)²+(c-a)²]/[(a-b)(b-c)(c-a)]
a≠b,(a-b)²>0,同理,(b-c)²>0 (c-a)²>0
(a-b)²+(b-c)²+(c-a)²>0,又分母(a-b)(b-c)(c-a)≠0,因此
(a-b)/[(b-c)(c-a)]+(b-c)/[(a-b)(c-a)]+(c-a)/[(a-b)(b-c)]的值不可能为0。
1.
x+y=2 (x+1)+(y+1)=2+2=4
xy=1 (x+1)(y+1)=xy+(x+y)+2=1+2+2=5
(y+1)/(x+1)+ (x+1)/(y+1)
=[(x+1)²+(y+1)²]/[(x+1)(y+1)]
=[(x+1+y+1)²-2(x+1)(y+1)]/[(x+1)(y+1)]
=(4²-2×5)/5
=6/5
2.
分式有意义,a-b≠0,b-c≠0,c-a≠0
(a-b)/[(b-c)(c-a)]+(b-c)/[(a-b)(c-a)]+(c-a)/[(a-b)(b-c)]
=[(a-b)²+(b-c)²+(c-a)²]/[(a-b)(b-c)(c-a)]
a≠b,(a-b)²>0,同理,(b-c)²>0 (c-a)²>0
(a-b)²+(b-c)²+(c-a)²>0,又分母(a-b)(b-c)(c-a)≠0,因此
(a-b)/[(b-c)(c-a)]+(b-c)/[(a-b)(c-a)]+(c-a)/[(a-b)(b-c)]的值不可能为0。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询