多个函数的乘法求导法则

 我来答
妖感肉灵10
2022-11-17 · TA获得超过6.2万个赞
知道顶级答主
回答量:101万
采纳率:99%
帮助的人:2.2亿
展开全部

举个例子:(abcd)' = a'bcd + ab'cd +abc'd + abcd。

导数公式

1、C'=0(C为常数);

2、(sinX)'=cosX;

3、(cosX)'=-sinX;

4、(aX)'=aXIna (ln为自然对数);

5、(logaX)'=1/(Xlna) (a>0,且a≠1);

扩展资料:

一、求导的注意事项:

1、不是所有的函数都可以求导。

2、可导的函数一定连续,但连续的函数不一定可导(如y=|x|在y=0处不可导)。

二、求导为微积分的基础,同时也是微积分计算的一个重要的支柱。物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。

三、导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。

参考资料来源:百度百科-求导

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式