解方程:x/(x-2)+(x-9)/(x-7)=(x+1)/(x-1)+(x-8)/(x-6)
1个回答
展开全部
解:
x/(x-2)+(x-9)/(x-7)=(x+1)/(x-1)+(x-8)/(x-6)
1+2/(x-2)+1-2/(x-7)=1+2/(x-1)+1-2/(x-6)
1/(x-2)-1/(x-7)=1/(x-1)-1/(x-6)
1/(x-2)+1/(x-6)=1/(x-1)+1/(x-7)
(2x-8)/(x^2-8x+12)=(2x-8)/(x^2-8x+7)
由于x^2-8x+12不等于x^2-8x+7
因此,只有2x-8=0
x=4,这个方程只有一个解。
x/(x-2)+(x-9)/(x-7)=(x+1)/(x-1)+(x-8)/(x-6)
1+2/(x-2)+1-2/(x-7)=1+2/(x-1)+1-2/(x-6)
1/(x-2)-1/(x-7)=1/(x-1)-1/(x-6)
1/(x-2)+1/(x-6)=1/(x-1)+1/(x-7)
(2x-8)/(x^2-8x+12)=(2x-8)/(x^2-8x+7)
由于x^2-8x+12不等于x^2-8x+7
因此,只有2x-8=0
x=4,这个方程只有一个解。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询