求x→0时lim[1/x-1/(e^x-1)]的极限

 我来答
天罗网17
2022-08-10 · TA获得超过6194个赞
知道小有建树答主
回答量:306
采纳率:100%
帮助的人:73.5万
展开全部
x→0,lim[1/x-1/(e^x-1)]=lim[(e^x-1-x)/x(e^x-1)]
这个0/0型的,运用罗比达可以得到结果,但是我运用的是等价无穷小和泰勒展开来解题的,
e^x=1+x+x^2/2+……+x^n/n!n->oo
对于本题,展开到二阶即可,因为分母e^x-1~x,在x->0的时候.
所以,极限为:x→0时lim[1/x-1/(e^x-1)]=lim[x^2/2+o(x^2)]/x^2=1/2+0=1/2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式