写出求1/(1*2)+1/(2*3)+…+1/(99*100)值的一个算法,并画出流程图、
1个回答
展开全部
思路:由于各分数的分母都是两个连续自然数的乘积,也就是形如:1/[n*(n+1)],它可以拆成:1/[n*(n+1)]=1/n-1/(n+1),然后可以看到拆完的相邻的两个分数正负相消.
1/1*2+1/2*3+1/3*4+...+1/99*100
=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
=1-1/100
=99/100
这种方法叫做裂项相消法.
1/1*2+1/2*3+1/3*4+...+1/99*100
=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
=1-1/100
=99/100
这种方法叫做裂项相消法.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询