高一数学题,求解?
1个回答
展开全部
方法1、(atctanx)'=1/(tany)'=1/sec^2y=1/(1+tan^2y)=1/(1+x^2) 利用反函数求导法则
方法2、lim(h-->0)(arctan(x+h)-arctanx)/h
令arctan(x+h)-arctanx=u ,tanu=h/[1+(x+h)x] h=(1+x^2)tanu/(1-xtanu)
=limu(1-xtanu)/(1+x^2)tanu=1/(1+x^2)
tanu等价u
方法2、lim(h-->0)(arctan(x+h)-arctanx)/h
令arctan(x+h)-arctanx=u ,tanu=h/[1+(x+h)x] h=(1+x^2)tanu/(1-xtanu)
=limu(1-xtanu)/(1+x^2)tanu=1/(1+x^2)
tanu等价u
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询