不定积分怎么求?

 我来答
吉禄学阁

2023-05-10 · 吉禄学阁,来自davidee的共享
吉禄学阁
采纳数:13655 获赞数:62482

向TA提问 私信TA
展开全部
  • 例如计算不定积分∫x²3√1-xdx

  • 解:原式=3∫x²√1-x

    令√1-x=t

    x=1-t²

    dx=-2tdt

    原式=3∫(1-t²)²t(-2t)dt

    =3∫(-2t²+4t^4-2t^6)dt

    =-6∫t²dt+12∫t^4dt-6∫t^6dt

    =-2t^3+12/5t^5-6/7t^7+c

    =-2√(1-x)^3+12/5√(1-x)^5-6/7√(1-x)^7+c。

    请点击输入图片描述

    请点击输入图片描述

  • 例如本题不定积分计算过程如下:

  • ∫(1-3x)^6dx

    =(-1/3)∫(1-3x)^6d(1-3x)

    =-1/3*(1-3x)^7*(1/7)+C

    =-1/21*(1-3x)^7+C。

    请点击输入图片描述

    请点击输入图片描述

  • 不定积分概念

  • 设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+ C(其中,C为任意常数)叫做函数f(x)的不定积分,又叫做函数f(x)的反导数,记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。

    其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数或积分常量,求已知函数的不定积分的过程叫做对这个函数进行不定积分。

    请点击输入图片描述

    请点击输入图片描述

  • 不定积分计算方法

  • 不定积分的主要计算方法有:凑分法、公式法、第一类换元法、第二类换元法、分部积分法和泰勒公式展开近似法等。

    需要注意的是不是所有函数都能积分出来,同时各种方法可以用其一也可以多种方法综合应用。

    请点击输入图片描述

教育小百科达人
2022-11-15 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:465万
展开全部

用分部积分解决

∫ arctanx dx

=xarctanx-∫ x d(arctanx)

=xarctanx-∫ x /(1+x^2) dx

=xarctanx-(1/2) ∫ 1/(1+x^2) d(1+x^2) 

=xarctanx-(1/2)ln(1+x^2)+C

不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。

一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

扩展资料:

求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。

证明:如果f(x)在区间I上有原函数,即有一个函数F(x)使对任意x∈I,都有F'(x)=f(x),那么对任何常数显然也有[F(x)+C]'=f(x).即对任何常数C,函数F(x)+C也是f(x)的原函数。这说明如果f(x)有一个原函数,那么f(x)就有无限多个原函数。

设G(x)是f(x)的另一个原函数,即∀x∈I,G'(x)=f(x)。于是[G(x)-F(x)]'=G'(x)-F'(x)=f(x)-f(x)=0。

由于在一个区间上导数恒为零的函数必为常数,所以G(x)-F(x)=C’(C‘为某个常数)。

这表明G(x)与F(x)只差一个常数.因此,当C为任意常数时,表达式F(x)+C就可以表示f(x)的任意一个原函数。也就是说f(x)的全体原函数所组成的集合就是函数族{F(x)+C|-∞<C<+∞}。

由此可知,如果F(x)是f(x)在区间I上的一个原函数,那么F(x)+C就是f(x)的不定积分,即∫f(x)dx=F(x)+C。

因而不定积分∫f(x) dx可以表示f(x)的任意一个原函数。

参考资料:百度百科——不定积分

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式