设x,y,z是正实数,且x+y+z=1.求证:(1)xy+yz+xz≤1/3,(2)x√y+y√z+z√x≤√3/3.
2013-07-13
展开全部
x+ y+ z=1,得(x+ y+ z)²=x²+ y²+ z²+ 2(xy+ yz+ xz)=1
又x²+ y²≥2xy,x² +z²≥2xz,y²+ z²≥2yz,
则x²+ y²+ z²≥xy+ yz+ xz
∴1≥3(xy+ yz+ xz) (x=y=z时取等)
故xy+ yz+ xz≤1/3
又x²+ y²≥2xy,x² +z²≥2xz,y²+ z²≥2yz,
则x²+ y²+ z²≥xy+ yz+ xz
∴1≥3(xy+ yz+ xz) (x=y=z时取等)
故xy+ yz+ xz≤1/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询