函数的平移 把一个函数图像向上下左右平移 新的解析式应该怎么算呢?
“左加右减,上加下减”
例:y=2x+3
向左平移a:y=2(x+a)+3
向右平移a:y=2(x-a)+3
向上平移a:y=2x+3+a
向下平移a:y=2x+3-a
扩展资料:
函数平移代表其在坐标系(或坐标平面)里的相对位置发生了变化,而对函数本身的性质和其代表的实际意义没有任何影响。
函数平移的实际意义是代表函数在坐标系(或坐标平面)内的相对位置发生变化,而对函数本身的性质和其代表的实际意义没有任何影响。比如:y=kx+b,上移或下移表示整条直线沿着Y轴的方向向上或向下平移若干个单位。
函数图象平移的本质是函数图象位置的移动,函数图象本身没有发生变化,只是平移后的函数图象在二维坐标系中对应的坐标发生了变化。函数图象在平移的过程中,其平移具有针对性。函数图象平移不外乎两种情况,即左、右平移和上、下平移。
函数图象的左、右平移是针对横坐标 x 而言,函数图象的上、下平移是针对纵坐标 y 而言。当函数图象向左、右平移时,纵坐标保持不变,横坐标遵循左加右减的规则;当函数图象向上、下平移时,横坐标保持不变,纵坐标遵循上减下加的规则。
一次函数的平移
不需要对一般式变形,只是在y=kx+b的基础上,在括号内对“x”和“b”直接进行调整。 对b符号的增减,决定直线图像在y轴上的上下平移。向上平移b+m,向下平移b-m。 对括号内x符号的增减,决定直线图像在x轴上的左右平移。向左平移k(x+n),向右平移k(x-n) 。
二次函数的平移
(1)将y=ax²的图象向上(c>0)或向下(c<0)平移|c|个单位,即可得到y=ax²+c的图象.其顶点是(0,c)。形状、对称轴、开口方向与抛物线y=ax²相同。
(2)将y=ax²的图象向左(h<0)或向右(h>0)平移|h|个单位,即可得到y=a(x-h) ²的图象.其顶点是(h,0),对称轴是直线x=h,形状、开口方向与抛物线y=ax2相同。
(3)将y=ax²的图象向左(h<0)或向右(h>0)平移|h|个单位,再向上(k>0)或向下(k<0)平移|k|个单位,即可得到y=a(x-h) ²+k的图象,其顶点是(h,k),对称轴是直线x=h,形状、开口方向与抛物线y=ax²相同。
反比例函数的平移
对于双曲线y= k/x,若在分母x上加、减任意一个实数 y= k/x±m,就相当于将双曲线图象向左或右平移一个单位。加一个数时向左平移,减一个数时向右平移。
参考资料:百度百科-函数平移
2024-08-07 广告