向量坐标相乘怎么算?

 我来答
惠企百科
2022-12-11 · 百度认证:北京惠企网络技术有限公司官方账号
惠企百科
惠企百科网是一家科普类综合网站,关注热门中文知识,集聚互联网精华中文知识,本着自由开放、分享价值的基本原则,向广大网友提供专业的中文知识平台。
向TA提问
展开全部

向量相乘分数量积、向量积两种:

向量 a = (x,   y,   z),  

向量 b = (u,   v,   w),

数量积 (点积): a·b = xu+yv+zw

向量积 (叉积): a×b = |i     j     k|  |x    y    z|  |u    v    w|

向量积|c|=|a×b|=|a||b|sin<a,b>

即c的长度在数值上等于以a,b,夹角为θ组成的平行四边形的面积。

而c的方向垂直于a与b所决定的平面,c的指向按右手定则从a转向b来确定。

*运算结果c是一个伪向量。这是因为在不同的坐标系中c可能不同。

扩展资料:

代数规则:

1、反交换律:a×b=-b×a

2、加法的分配律:a×(b+c)=a×b+a×c。

3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。

4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。

5、分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的R3构成了一个李代数。

6、两个非零向量a和b平行,当且仅当a×b=0。

i,j,k满足以下特点:

i=jxk;j=kxi;k=ixj;

kxj=_i;ixk=_j;jxi=_k;

ixi=jxj=kxk=0;(0是指0向量)

由此可知,i,j,k是三个相互垂直的向量。它们刚好可以构成一个坐标系。

这三个向量的特例就是i=(1,0,0)j=(0,1,0)k=(0,0,1)。

对于处于i,j,k构成的坐标系中的向量u,v我们可以如下表示:

u=Xu*i+Yu*j+Zu*k;

v=Xv*i+Yv*j+Zv*k;

那么uxv=(Xu*i+Yu*j+Zu*k)x(Xv*i+Yv*j+Zv*k)

=Xu*Xv*(ixi)+Xu*Yv*(ixj)+Xu*Zv*(ixk)+Yu*Xv*(jxi)+Yu*Yv*(jxj)+Yu*Zv*(jxk)+Zu*Xv*(kxi)+Zu*Yv*(kxj)+Zu*Zv*(kxk)

由于上面的i,j,k三个向量的特点,所以,最后的结果可以简化为

uxv=(Yu*Zv_Zu*Yv)*i+(Zu*Xv_Xu*Zv)*j+(Xu*Yv_Yu*Xv)*k。

参考资料来源:百度百科——向量积

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式