怎样计算sinx的不定积分?
计算过程如下:
sinx/(sinx+cosx)的不定积分
=∫ (sinxcosx)/(sinx + cosx) dx
= (1/2)∫ (2sinxcosx)/(sinx + cosx) dx
= (1/2)∫ [(1 + 2sinxcosx) - 1]/(sinx + cosx) dx
= (1/2)∫ (sin²x + 2sinxcosx + cos²x)/(sinx + cosx) dx - (1/2)∫ dx/(sinx + cosx)
= (1/2)(- cosx + sinx) - [1/(2√2)]ln|csc(x + π/4) - cot(x + π/4)| + C
不定积分的证明:
如果f(x)在区间I上有原函数,即有一个函数F(x)使对任意x∈I,都有F'(x)=f(x),那么对任何常数显然也有[F(x)+C]'=f(x).即对任何常数C,函数F(x)+C也是f(x)的原函数。这说明如果f(x)有一个原函数,那么f(x)就有无限多个原函数。
设G(x)是f(x)的另一个原函数,即∀x∈I,G'(x)=f(x)。于是[G(x)-F(x)]'=G'(x)-F'(x)=f(x)-f(x)=0。
由于在一个区间上导数恒为零的函数必为常数,所以G(x)-F(x)=C’(C‘为某个常数)。
2021-01-25 广告