sin²a+cos²a是勾股定理的公式。
任意角的三角函数是这样定义的,设圆心在坐标系原点且半径为r的圆O,角α的顶点与原点重合,始边与x轴正半轴重合,终边与圆O交於(x,y),则sinα=y/r,cosα=x/r。
sin²α+cos²α=y²/r²+x²/r²=(x²+y²)/r²=r²/r²=1
勾股定理的意义:
1、勾股定理的证明是论证几何的发端。
2、勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理。
3、勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解。
4、勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理。