∫x^2 a^x dx 求解
1个回答
展开全部
∫ x^2a^x dx
= ∫ x^2 d(a^x/lna)
= (1/lna)x^2a^x - (1/lna)∫ a^x d(x^2)
= (1/lna)x^2a^x - (2/lna)∫ xa^x dx
= (1/lna)x^2a^x - (2/lna)∫ x d(a^x/lna)
= (1/lna)x^2a^x - (2/(lna)^2)xa^x + (2/(lna)^2)∫ a^x dx
= (1/lna)x^2a^x - (2/(lna)^2)xa^x + (2/(lna)^3)a^x + C
= (a^x)[x^2(lna)^2 - 2xlna + 2]/(lna)^3 + C
三次分部积分法
= ∫ x^2 d(a^x/lna)
= (1/lna)x^2a^x - (1/lna)∫ a^x d(x^2)
= (1/lna)x^2a^x - (2/lna)∫ xa^x dx
= (1/lna)x^2a^x - (2/lna)∫ x d(a^x/lna)
= (1/lna)x^2a^x - (2/(lna)^2)xa^x + (2/(lna)^2)∫ a^x dx
= (1/lna)x^2a^x - (2/(lna)^2)xa^x + (2/(lna)^3)a^x + C
= (a^x)[x^2(lna)^2 - 2xlna + 2]/(lna)^3 + C
三次分部积分法
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询