怎么证明二项式定理?

 我来答
正在统计中
2022-10-30 · TA获得超过201个赞
知道答主
回答量:80
采纳率:0%
帮助的人:0
展开全部
定理(1)二项式系数和等于2^n
∵(1+x)^n=Cn0+Cn1x+Cn2x^2+Cn3x^3+…+Cnnx^n
令x=1得
Cn0+Cn1+Cn2+…+Cnn=2^n

定理2:奇数项二项式系数和等于偶数项二项式系数和
∵(1+x)^n=Cn0+Cn1x+Cn2x^2+Cn3x^3+…+Cnnx^n
令x=1得
Cn0+Cn1+Cn2+…+Cnn=2^n ①
令x=-1得
Cn0-Cn1x+Cn2x^2-Cn3x^3+…+Cnn(-x)^n=0 ②
由②得
Cn0+Cn2+Cn4+…=Cn1+Cn3+Cn5+…
所以奇数项二项式系数和等于偶数项二项式系数和
再代入①得
Cn0+Cn2+Cn4+…=Cn1+Cn3+Cn5+…=2^(n-1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式