23、如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的
展开全部
1、(1)当点P与点N重合或点Q与点M重合时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边可能构成一个三角形.
①当点P与点N重合时,
(舍去).
因为BQ+CM=,此时点Q与点M不重合.
所以符合题意.
②当点Q与点M重合时,
.
此时,不符合题意.
故点Q与点M不能重合.
所以所求x的值为.
(2)由(1)知,点Q 只能在点M的左侧,
①当点P在点N的左侧时,
由,
解得.
当x=2时四边形PQMN是平行四边形.
②当点P在点N的右侧时,
由,
解得.
当x=4时四边形NQMP是平行四边形.
所以当时,以P,Q,M,N为顶点的四边形是平行四边形.
(3)过点Q,M分别作AD的垂线,垂足分别为点E,F.
由于2x>x,
所以点E一定在点P的左侧.
若以P,Q,M,N为顶点的四边形是等腰梯形,
则点F一定在点N的右侧,且PE=NF,
即.
解得.
由于当x=4时, 以P,Q,M,N为顶点的四边形是平行四边形,
所以以P,Q,M,N为顶点的四边形不能为等腰梯形
①当点P与点N重合时,
(舍去).
因为BQ+CM=,此时点Q与点M不重合.
所以符合题意.
②当点Q与点M重合时,
.
此时,不符合题意.
故点Q与点M不能重合.
所以所求x的值为.
(2)由(1)知,点Q 只能在点M的左侧,
①当点P在点N的左侧时,
由,
解得.
当x=2时四边形PQMN是平行四边形.
②当点P在点N的右侧时,
由,
解得.
当x=4时四边形NQMP是平行四边形.
所以当时,以P,Q,M,N为顶点的四边形是平行四边形.
(3)过点Q,M分别作AD的垂线,垂足分别为点E,F.
由于2x>x,
所以点E一定在点P的左侧.
若以P,Q,M,N为顶点的四边形是等腰梯形,
则点F一定在点N的右侧,且PE=NF,
即.
解得.
由于当x=4时, 以P,Q,M,N为顶点的四边形是平行四边形,
所以以P,Q,M,N为顶点的四边形不能为等腰梯形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询