Sin60度等于多少
sin60°=(√3)/2。
则sin60°=b/c=(√3)/2。
正弦(sine),数学术语,在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA(由英语sine一词简写得来),即sinA=∠A的对边/斜边。
扩展资料:
正弦定理(The Law of Sines)是三角学中的一个基本定理,它指出“在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径”,即a/sinA = b/sinB =c/sinC = 2r=D(r为外接圆半径,D为直径)。
常用特殊角的函数值:
1、sin30°=1/2
2、cos30°=(√3)/2
3、sin45°=(√2)/2
4、cos45°=(√2)/2
5、sin60°=(√3)/2
6、cos60°=1/2
7、sin90°=1
8、cos90°=0
9、tan30°=(√3)/3
10、tan45°=1
11、tan90°不存在
sin60°=√3/2
在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA(由英语sine一词简写得来),即sinA=∠A的对边/斜边。
sin = 直角三角形的对边比斜边
斜边为r,对边为y,邻边为a。斜边r与邻边a夹角Ar的正弦sinA=y/r
无论a,y,r为何值,正弦值恒大于等于0小于等于1,即0≤sin≤1
扩展资料:
和角公式:
sin ( α ± β ) = sinα · cosβ ± cosα · sinβ
sin ( α + β + γ ) = sinα · cosβ · cosγ + cosα · sinβ · cosγ + cosα · cosβ · sinγ - sinα · sinβ · sinγ
cos ( α ± β ) = cosα cosβ ∓ sinβ sinα
tan ( α ± β ) = ( tanα ± tanβ ) / ( 1 ∓ tanα tanβ )
2013-07-15
不妨记30度角对边为1,则斜边长为2,所以由勾股定理得60度角的对边为根号3,所以sin60度=y/r=(根号3)/2
画出直角三角形(30、60、90度)30度所对的直角边为斜边的一半,根据勾股定理可假设三边为1、2、根号3,再根据角度就能知道三角函数:即斜边比长直角边SIN60=√3/2。
sin60度是√3/2,又叫二分之根号三(也是COS30度))。 画出直角三角形(30、60、90度)30度所对的直角边为斜边的一半,根据勾股定理可假设三边为1、2、根号3,再根据角度就能知道三角函数。在直角三角形中,ZA(非直角)的对边与斜边的比叫做ZA的正弦,故记作sinA,即sinA=ZA的对边/zA的斜边,古代说法,正弦是股与弦的比例。古代说的“勾三股,四弦五”中的“弦”,就是直角三角形中的斜边。股就是人的大腿,长长的,古人称直角三角形中长的那个直角边为“股”﹔正方的直角三角形,应是大腿站直。
正弦是Lα(非直角)的对边与斜边的比值,余弦是ZA(非直角)的邻边与斜边的比值。勾股弦放到圆里。弦是圆周上两点连线。最大的弦是直径。把直角三角形的弦放在直径上,股就是长的弦,即正弦,而勾就是短的弦,即余弦。按现代说法,正弦是直角三角形某个角(非直角)的对边与斜边之比,即:对边/斜边。勾股弦放到圆里。弦是圆周上两点连线。最大的弦是直径。把直角三角形的弦放在直径上,股就是长的弦,即正弦,勾就是短的弦,即余下的弦:余弦。正弦示意图按现代说法,正弦是直角三角形的对边与斜边之比。
扩展资料:
三角函数(也叫做"圆函数")是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。
推荐于2017-11-25
广告 您可能关注的内容 |