π/4<a<3π/4,0<b<π/4,cos(π/4+a)=-5/3,sin(3π/4+b)=5/13,求sin(a+b)
1个回答
展开全部
注:题目cos(π/4+a)=-5/3错误,改为cos(π/4+a)=-5/13
π/4<a<3π/4,π/2<π/4+a<π
cos(π/4+a)=-5/13
sin(π/4+a)=12/13
0<b<π/4,3π/4<3π/4+b<π
sin(3π/4+b)=5/13
cos(3π/4+b)=-12/13
sin(a+b)
=-sin(π+a+b)
=-sin[(π/4+a)+(3π/4+b)]
=-[sin(π/4+a)*cos(3π/4+b)+cos(π/4+a)*sin(3π/4+b)]]
=-[(12/13)*(-12/13)+(-5/13)*(5/13)]
=1
π/4<a<3π/4,π/2<π/4+a<π
cos(π/4+a)=-5/13
sin(π/4+a)=12/13
0<b<π/4,3π/4<3π/4+b<π
sin(3π/4+b)=5/13
cos(3π/4+b)=-12/13
sin(a+b)
=-sin(π+a+b)
=-sin[(π/4+a)+(3π/4+b)]
=-[sin(π/4+a)*cos(3π/4+b)+cos(π/4+a)*sin(3π/4+b)]]
=-[(12/13)*(-12/13)+(-5/13)*(5/13)]
=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询