数学复变函数对考研重要吗?
1个回答
展开全部
这个非常重要,对孩子影响特别大,所以必须重|视|起来。
复变函数也研究多值函数,L曲面理论是研究多值函数的主要工具。由许多层面安放在一起而构成的一种曲面叫做L曲面。利用这种曲面,可以使多值函数的单值支和支点概念在几何上有非常直观的表示和说明。对于某一个多值函数,如果能作出它的L曲面,那么,函数在L曲面上就变成单值函数。
L曲面理论是复变函数域和几何间的一座桥梁,能够使我们把比较深奥的函数的解析性质和几何联系起来。关于L曲面的研究还对另一门数学分支拓扑学有比较大的影响,逐渐地趋向于讨论它的拓扑性质。
复变函数论中用几何方法来说明、解决问题的内容,一般叫做几何函数论,复变函数可以通过共形映象理论为它的性质提供几何说明。导数处处不是零的解析函数所实现的映像就都是共形映象,共形映像也叫做保角变换。
留数理论是复变函数论中一个重要的理论。留数也叫做残数,它的定义比较复杂。应用留数理论对于复变函数积分的计算比起线积分计算方便。计算实变函数定积分,可以化为复变函数沿闭回路曲线的积分后,再用留数基本定理化为被积分函数在闭合回路曲线内部孤立奇点上求留数的计算,当奇点是极点的时候,计算更加简洁。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询