实对称矩阵的秩和对角矩阵的秩相同吗

 我来答
世纪网络17
2022-10-06 · TA获得超过5940个赞
知道小有建树答主
回答量:2426
采纳率:100%
帮助的人:141万
展开全部
前提条件是A可对角化。

此时 存在可逆矩阵P满足 P^-1AP = 对角矩阵

r(A) = r(P^-1AP) = r(对角矩阵) = 非零特征值的个数。

或者应该是可对角化的矩阵的秩等于非零特征值的个数,矩阵与其对角阵秩必然相等,对角阵的秩为非零特征值的个数。

非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量。如果A和B是实对称矩阵,则特征值为实数。

扩展资料:

在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。通俗一点说,如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。

若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定。反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值。

在A变换的作用下,向量ξ仅仅在尺度上变为原来的λ倍。称ξ是A 的一个特征向量,λ是对应的特征值(本征值),是(实验中)能测得出来的量,与之对应在量子力学理论中,很多量并不能得以测量。

前提条件是A可对角化

此时 存在可逆矩阵P满足 P^-1AP = 对角矩阵

r(A) = r(P^-1AP) = r(对角矩阵) = 非零特征值的个数

或者

应该是可对角化的矩阵的秩等于非零特征值的个数,矩阵与其对角阵秩必然相等,对角阵的秩为非零特征值的个数。

扩展资料

矩阵的秩的定理:

若A~B,则R(A)= R(B)。

根据这一定理,为求矩阵的秩,只要把矩阵用初等行变换成行阶梯形矩阵,易见该矩阵最高阶非零子式的阶数。显然行阶梯形矩阵中非零行的行数即是该矩阵的秩。这就给出求矩阵秩的方法。

如果向量组:

(I)α1,α2,...,αsα1,α2,...,αs可以由。

(II)β1,β2,...,βtβ1,β2,...,βt线性表出,则r(II)≥r(I)r(II)≥r(I)。

解释为:能表出其他向量组,则其他向量组必然在自己的范围内,如果II的秩没有I大,则撑不起I张起的空间。这是很酷的一个定理。

r(A) = A的行秩(矩阵A的行向量组的秩)= A的列秩(矩阵A的列向量组的秩)。

初等变换的向量组的秩不变。

前提条件是A可对角化

此时 存在可逆矩阵P满足 P^-1AP = 对角矩阵

r(A) = r(P^-1AP) = r(对角矩阵) = 非零特征值的个数

或者

应该是可对角化的矩阵的秩等于非零特征值的个数,矩阵与其对角阵秩必然相等,对角阵的秩为非零特征值的个数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
图为信息科技(深圳)有限公司
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。... 点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式