设数列{An}前n项和sn=4-an-(1/2^n-2),求An?
1个回答
展开全部
a1=s1=4-a1-1/2^(1-2)=4-a1-2=2-a1
a1=1
sn=4-an-1/2^(n-2)
s(n-1)=4-a(n-1)-1/2^(n-3)
sn=s(n-1)+an
4-an-1/2^(n-2)=4-a(n-1)-1/2^(n-3)+an
2an-a(n-1)+1/2^(n-2)-1/2^(n-3)=0
2an-a(n-1)+1/2^(n-3)=0
设2[an+x]-[a(n-1)+x]=0
x=1/2^(n-3)
2[an+1/2^(n-3)]-[a(n-1)+1/2^(n-3)]=0
2[an+1/2^(n-3)]=[a(n-1)+1/2^(n-3)]
设an+1/2^(n-3)=bn,
b1=a1+1/2^(1-3)=1+4=5
2bn=b(n-1)
bn=5(1/2)^(n-1)
an=bn-1/2^(n-3)
=5(1/2)^(n-1)-1/2^(n-3)
=5(1/2)^(n-1)-4(1/2)^(n-1)
=(1/2)^(n-1)
a1=1
sn=4-an-1/2^(n-2)
s(n-1)=4-a(n-1)-1/2^(n-3)
sn=s(n-1)+an
4-an-1/2^(n-2)=4-a(n-1)-1/2^(n-3)+an
2an-a(n-1)+1/2^(n-2)-1/2^(n-3)=0
2an-a(n-1)+1/2^(n-3)=0
设2[an+x]-[a(n-1)+x]=0
x=1/2^(n-3)
2[an+1/2^(n-3)]-[a(n-1)+1/2^(n-3)]=0
2[an+1/2^(n-3)]=[a(n-1)+1/2^(n-3)]
设an+1/2^(n-3)=bn,
b1=a1+1/2^(1-3)=1+4=5
2bn=b(n-1)
bn=5(1/2)^(n-1)
an=bn-1/2^(n-3)
=5(1/2)^(n-1)-1/2^(n-3)
=5(1/2)^(n-1)-4(1/2)^(n-1)
=(1/2)^(n-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询