问大家一道题,已知分式(x^2-x+1)/x=3,试求x^2/(x^4+x^2+1)的值。谢谢!
问大家一道题,已知分式(x^2-x+1)/x=3,试求x^2/(x^4+x^2+1)的值。谢谢!
(x^2-x+1)/x=3化简得x+1/x=4,所以(x+1/x)^2=4^2,展开整理得到x^2+1/x^2=14
x^2/(x^4+x^2+1)分子和分母同时除以x^2得1/(x^2+1+1/x^2)=1/(1+14)=1/15
已知分式(x^2-x+1)/x=3,试求x^2/(x^4+x^2+1)的值。(要过程)
(X^2-X+1)/X=X-1+1/X=3
X+1/X=4
(X^4+X^2+1)/X^2=X^2+1+1/X^2=(X+1/X)^2-2=4^2-2=14
(x^4+x^2+1)/x^2=1/<x^2/(x^4+x^2+1)>=14
x^2/(x^4+x^2+1)=1/14
若x/(x^2-x+1)=4,求分式x^2/(x^4+x^2+1)的值
解:∵x/(x^2-x+1)=4
∴﹙x²-x+1﹚/x=1/4
x+1/x=5/4
x²+2+1/x²=25/16
x²+1/x²=﹣7/16
∵﹙ x^4+x²+1﹚/x²=x²+1/x²+1=﹣7/16+1=9/16
∴ x²/﹙x^4+x²+1﹚=16/9.
已知x/(x^2+x+1)=a,求分式x^2/(x^4+x^2+1)的值
x/(x^2+x+1)=a,
1/[x+1+(1/x)]=a,
x+(1/x)+1=1/a,
x+(1/x)=(1-a)/a,
x^2/(x^4+x^2+1)
=1/[x^2+1+(1/x^2)]
=1/{[x+(1/x)]^2-2*x*(1/x)+1}
=1/{[(1-a)/a]^2-1}
=1/[(1-a)^2/a^2-a^2/a^2]
=1/[(1-2a)/a^2]
=a^2/(1-2a).
已知x/x^2-x+1=7 求x^2/x^4+x^2+1的值
x/x^2-x+1=7
分子分母同时除以x,得
1/(x-1+1/x)=7
x-1+1/x=1/7
x + 1/x =8/7
平方得
(x + 1/x)² =(8/7)²=64/49
x² + 2 + 1/x² = 64/49
x² +1 + 1/x² = 15/49
求倒数
1/(x² +1 + 1/x²)= 49/15
分子分母同时乘以x²,得
x^2/x^4+x^2+1=49/15
答:
x^2/x^4+x^2+1=49/15
已知X/X^2-X+1=5 ,求X^2/X^4+X^2+1 的值。
X/(X^2-X+1)=5
所以
(X^2-X+1)/X=1/5
x-1+1/x=1/5
X+1/X=6/5
所以
平方,得
X²+2+1/X²=36/25
X²+1/X²=-14/25
所以
X^2/(X^4+X^2+1)
=1/(X²+1+1/X²)
=1/(-14/25+1)
=1/(11/25)
=25/11