中心点的选择对bp神经网络的性能会有什么影响

 我来答
爱的彼岸668
2022-12-11 · TA获得超过108个赞
知道小有建树答主
回答量:7320
采纳率:94%
帮助的人:183万
展开全部
由于预测的随机性和不确定性,传统的回归分析、数理统计等方法往往难以达到理想的预测效果。BP神经网络(Back一Propagation Network,BP)是人工神经网络(Artificial Neural Network,ANN)中应用最为广泛的神经网络模型之一,具有较强的非线性映射能力、鲁棒性、容错性和自适应、自组织、自学习等许多特性,在水文预测预报中具有广泛应用。

1.2 BP神经网络的缺点

然而,在实际应用中,BP神经网络的初始连接权值、阂值的选取对于BP神经网络性能具有关键性影响,若初始连接权值、阂值选取不当,则易导致BP神经网络陷入传统固有的缺陷——收敛速度慢和易陷入局部极值。

1.3 BP神经网络的优化

目前常用于BP神经网络初始连接权值、阂值优化的智能方法主要是遗传算法(Genetic Algorithm,GA)、粒子群优化(Particle Swarm Optimization,PSO)算法及其改进算法。除此之处,一些仿生群体智能算法被用于BP神经网络初始连接权值、阂值的优化,如人工鱼群算法(Artificial Fish Swarm Algorithm,AFSA)、布谷鸟搜寻算法(Cuckoo Search,CS)、蜂群算法(Articficial Bee Colony,ABC)、萤火虫优化算法(Glowworm Swarm Optimization,GSO)以及差分进化算法(Differential Evolution,DE),在提高BP神经网络预测或分类性能上取得了一定的效果。

但由于经网络预测或分类性能上取得了一定的效果。但由于待优化的BP神经网络初始连接权值、阂值维度往往达维度比较高,传统GA等智能算法很难获得更为理想的优化结果。狼群算法(Wolf Pack Algorithm,WPA)是一种模拟狼群分工协作捕猎行为及猎物分配方式的新型仿生群体智能算法,该算法具有较好的鲁棒性和全局搜索能力,在与PSO、AFSA及GA算法的各种测试函数极值寻优比较中,WPA算法显示出较大的性能优势,尤其对于高维、多峰的复杂函数具有更佳的寻优效果。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式