跪求高中数学必修一到必修五的全部知识点公式总结
1个回答
展开全部
高中数学必修一知识点总结
集合与函数知识模块
集合:涉及集合元素的推测以及集合的交、并、补运算。
一般考查涉及到不等式。
通例:A={a≤x≤b},B={c≤x≤d},试求A与B的交、并、补混合运算。
有限集合涉及集合中元素个数:card(A)=n
那么 子集:(2^n),真子集、非空子集、非空真子集相应变化。
一般考查集合交、并、补运算之后的元素个数。
通例:M={y|y=f(x)},N={z|z=f(x)},试求M、N交、并、补运算
之后的元素个数。
高中数学必修二知识点总结
立体几何与直线、圆模块
立体几何:考查线线角,线面角,面面角以及各种距离。
常用定理:线面垂直定理,三垂线定理
立体几何的空间向量解法,给立体图形建立空间坐标,以
简化某些空间关系上的运算
直线与圆:通过方程关系判断二者关系——相交、相切、相离
主要运用圆心到直线的距离公式判断
圆与圆:利用圆心距与半径关系判断二者关系——外切、内切、
相交、内含、外离
高中数学必修三知识点总结
算法、统计、概率模块
算法:主要掌握循环和选择的技巧
统计与概率:基本概率类型的认知和统计方法的思考,
需要在具体题目中认知。
高中数学必修四知识点总结
三角函数、向量模块
三角函数:公式的应用,主要是倍角公式
然后是万能公式、半角公式。
cos2α=2cos^(2)α-1 sin2α=2sinαcosα
2sin^(2)α=1-cos2α 2cos^(2)α=1+cos2α
tan2α=(2tanα/1-(tan^2)α) sin2α=(2tanα/1+(tan^2)α) cos2α=(1-(tan^2)α/1+(tan^2)α)
向量模块:
a=(x[1],y[1]),b=(x[2],y[2]),a·b=x[1]x[2]+y[1]y[2]=|a||b|cos<a,b>
共线、平行、共点的向量特点
高中数学必修五知识点总结
解三角形、数列、不等式模块
解三角形:将各个三角函数与三角形各边对应起来,引入
余弦定理和正弦定理
cosC=((a^2)+(b^2)-(c^2)/2ab) , a=2RsinA,b=2RsinB,c=2RsinC
数列与不等式:等差数列、等比数列通项公式、求和公式
逐项累加法、乘公比作差法、数学归纳法、
数列和与通项公式关系法等求出数列通项以及数列和。
利用基本的均值不等式,以及放缩法,找到一组数据的
不等关系。
集合与函数知识模块
集合:涉及集合元素的推测以及集合的交、并、补运算。
一般考查涉及到不等式。
通例:A={a≤x≤b},B={c≤x≤d},试求A与B的交、并、补混合运算。
有限集合涉及集合中元素个数:card(A)=n
那么 子集:(2^n),真子集、非空子集、非空真子集相应变化。
一般考查集合交、并、补运算之后的元素个数。
通例:M={y|y=f(x)},N={z|z=f(x)},试求M、N交、并、补运算
之后的元素个数。
高中数学必修二知识点总结
立体几何与直线、圆模块
立体几何:考查线线角,线面角,面面角以及各种距离。
常用定理:线面垂直定理,三垂线定理
立体几何的空间向量解法,给立体图形建立空间坐标,以
简化某些空间关系上的运算
直线与圆:通过方程关系判断二者关系——相交、相切、相离
主要运用圆心到直线的距离公式判断
圆与圆:利用圆心距与半径关系判断二者关系——外切、内切、
相交、内含、外离
高中数学必修三知识点总结
算法、统计、概率模块
算法:主要掌握循环和选择的技巧
统计与概率:基本概率类型的认知和统计方法的思考,
需要在具体题目中认知。
高中数学必修四知识点总结
三角函数、向量模块
三角函数:公式的应用,主要是倍角公式
然后是万能公式、半角公式。
cos2α=2cos^(2)α-1 sin2α=2sinαcosα
2sin^(2)α=1-cos2α 2cos^(2)α=1+cos2α
tan2α=(2tanα/1-(tan^2)α) sin2α=(2tanα/1+(tan^2)α) cos2α=(1-(tan^2)α/1+(tan^2)α)
向量模块:
a=(x[1],y[1]),b=(x[2],y[2]),a·b=x[1]x[2]+y[1]y[2]=|a||b|cos<a,b>
共线、平行、共点的向量特点
高中数学必修五知识点总结
解三角形、数列、不等式模块
解三角形:将各个三角函数与三角形各边对应起来,引入
余弦定理和正弦定理
cosC=((a^2)+(b^2)-(c^2)/2ab) , a=2RsinA,b=2RsinB,c=2RsinC
数列与不等式:等差数列、等比数列通项公式、求和公式
逐项累加法、乘公比作差法、数学归纳法、
数列和与通项公式关系法等求出数列通项以及数列和。
利用基本的均值不等式,以及放缩法,找到一组数据的
不等关系。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |