也许每个人都有自己的难题,我的难题是关于数学成绩的~

我是一名初二的学生,现在已经是初二下学期了,快要中考了,我还不知道该怎么办?家长一直在催啊催,我好烦恼哦,而且最近我的数学成绩下降了,本来呢,我的数学成绩不太好,可是经过... 我是一名初二的学生,现在已经是初二下学期了,快要中考了,我还不知道该怎么办?家长一直在催啊催,我好烦恼哦,而且最近我的数学成绩下降了,本来呢,我的数学成绩不太好,可是经过一段时间的努力,有了些提高,可是教到几何的部分,我就不懂了,我该怎么样做呢?哎,还有一个星期就要期中考试了,我不知道应该怎么办?怎么复习,问同学,他们自己的学习方法也用不来,应该怎么提高各科成绩,全面发展呢?好郁闷哦...就拿今天的数学考试来说吧,我考得很差,过去的考试都还有八九十多分,今天的数学都不会做,只有56分,同学的嘲笑,老师的讽刺,明天我都不敢去学校了,虽然没有很多人知道我这次的成绩,也许是我多心了吧,但是我真的很为自己的数学成绩担忧,好烦好烦,家长总是在耳旁说呀说,以前我总是把成绩告诉父母,不管是好坏,但是这次我不敢说了,因为父亲气不过的时候就会讽刺自己,好难过啊.~有没有什么好的学习方法呢,其实我的其他科目都还不错,就是数学拉了好多分,期中考试一定要考好,可是我该怎么办呢?
我知道一个人不能因为自己所谓的面子而丢弃了学业,可是说是这样说,但是做起来真的很不容易,现在最主要的问题就是我该怎么样考好期中考试呢?怎么使各科的成绩都得到有效的提高,全面发展呢?我一定会努力的!
展开
 我来答
百度网友a9084b3ae
2006-04-05 · TA获得超过1675个赞
知道小有建树答主
回答量:180
采纳率:100%
帮助的人:178万
展开全部
前面的主要是给数学不好同学的,我不知道你的数学究竟怎样,顺便也把一些比较高级方法给你,让你参考吧。其实如果数学学不好,智力因素中最大的原因是抽象思维不行。
初中数学学习方法
在数学学习的不同阶段,学习方法也应该有相应的改变,这也需要老师细心的指导,如在初一第二学期,初二、高一立体几何学习的开始,学生总感到难以入门,以下的方法是许多老教师十分认同的,无论是上课还是自学,均可以让差生试用。

一、代数学习法
1.抄标题,浏览定目标。

2.阅读并记录重点内容。

3.试作例题。

4.快做练习,归纳题型。

5.回忆小结

二、几何学习四大步
1.①书写标题,浏览教材 ②自我讲授,写出目录

2.①按目录,读教材 ②自我讲授几何概念及定理

3.①阅读例题,形成思路 ②写出解答例题过程

4.①快做练习。 ②小结解题方法。

三、初学几何证明的学习方法
在初一第二学期,初二、高一立体几何学习的开始,学生总感到难以入门,以下的方法是许多老教师十分认同的,无论是上课还是自学,均可以开展。

1. 看题画图(或抄写题目再画图);

2. 审题找思路(或听老师讲解思路);

3. 阅读书中证明过程;

4. 回忆并书写证明过程。

四、提高几何证明能力的化归法。
在掌握了几何证明的基本知识和方法以后,在能够较顺利和准确地表述证明过程的基础上,如何提高几何证明能力?这就需要积累各种几何题型的证明思路,需要懂得若干证明技巧。这样我们可以通过老师集中讲解,或者通过集中阅读若干几何证明题,而达到上述目的。

化归法是将未知化归为已知的方法,当我们遇到一个新的几何证明题时,我们需要注意其题型,找到关键步骤,将它化归为已知题型时就可结束。此时最重要的是记住化归步骤及证题思路即可,不再重视祥细的表述过程。

提高几何证明能力的化归法:

1.审题,弄清已知条件和求证结论

2.画图,作辅助线,寻找证题途径

3.记录证题途径的各个关键步骤

4.总结证明思路,使证题过程在大脑中形成清淅的印象

初中数学基础知识的学习
一、数学概念学习方法
数学中有许多概念,如何让学生正确地掌握概念,应该指明学习概念需要怎样的一个过程,应达到什么程度。数学概念是反映数学对象本质属性的思维形式,它的定义方式有描述性的,指明外种延的,有种概念加类差等方式。一个数学概念需要记住名称,叙述出本质属性,体会出所涉及的范围,并应用概念准确进行判断。这些问题老师没有要求,不给出学习方法,学生将很难有规律地进行学习。

下面我们归纳出数学概念的学习方法:

1.阅读概念,记住名称或符号。

2.背诵定义,掌握特性。

3.举出正反实例,体会概念反映的范围。

4.进行练习,准确地判断。

二、数学定理的学习方法
一个定理包含条件和结论两部分,定理必须进行证明,证明过程是连接条件和结论的桥梁,而学习定理是为了更好地应用它解决各种问题。

下面我们归纳出数学定理的学习方法:

1.背诵定理。

2.分清定理的条件和结论。

3.理解定理的证明过程。

4.应用定理证明有关问题。

5.体会定理与有关定理和概念的内在关系。

有的定理包含公式,如韦达定理、勾股定理、正弦定理,它们的学习还应该同数公式的学习方法结合起来进行。

三、学公式的学习方法
公式具有抽象性,公式中的字母代表一定范围内的无穷多个数。有的学生在学习公式时,可以在短时间内掌握,而有的学生却要反来复去地体会,才能跳出千变万化的数字关系的泥堆里。教师应明确告诉学生学习公式过程需要的步骤,使学生能够迅速顺利地掌握公式。

我们介绍的数学公式的学习方法是:

1.书写公式,记住公式中字母间的关系。

2.懂得公式的来龙去脉,掌握推导过程。

3.用数字验算公式,在公式具体化过程中体会公式中反映的规律。

4.将公式进行各种变换,了解其不同的变化形式。

5.将公式中的字母想象成抽象的框架,达到自如地应用公式。

数学概念的学习方法
1.找出核心概念。

2.找出非核心概念。

3.联系:找出核心概念和非核心概念的具体关系。彻底弄清楚核心概念是怎样从非核心概念中得来的。

4.定义:自己用非核心概念定义核心概念,这一步要求要做到:简洁、清晰、精确。

5.反思:核心概念又没有其它定义方法,又没有更好的定义方法。

四轮学习法
四步学习法
1.理解:内容,标志,阶段,过程。

2.巩固:透彻理解,牢固记忆,多方联想,合理复习。

3.应用:理论,实践,具体,综合。

4.系统化:

①明确系统内部各要素的属性。

②使各要素之间形成多方的联系。

③概括各要素的各种属性,形成整体性。

④同化于原知识系统之中。

四轮复习法:
①通读,进行系统复习;

②精读,进行重点复习;

③演练,进行解题复习;

④回忆,进行检验复习。

四步解题法:
①审题,搞清是什么;

②构思,搞清为什么;

③解答,搞清怎么办;

④检验,验证怎么样。

四步记忆法:记忆、保持、再认、再现。

这些看似常见的步骤,但一旦能够照步执行,学习效果就会立即显示出来。

高中数学学习方法
一、 有良好的学习兴趣
两千多年前孔子说过:“知之者不如好之者,好之者不如乐之者。”意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。“好”和“乐”就是愿意学,喜欢学,这就是兴趣。兴趣是最好的老师,有兴趣才能产生爱好,爱好它就要去实践它,达到乐在其中,有兴趣才会形成学习的主动性和积极性。在数学学习中,我们把这种从自发的感性的乐趣出发上升为自觉的理性的“认识”过程,这自然会变为立志学好数学,成为数学学习的成功者。那么如何才能建立好的学习数学兴趣呢?

1.课前预习,对所学知识产生疑问,产生好奇心。

2.听课中要配合老师讲课,满足感官的兴奋性。听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。

3.思考问题注意归纳,挖掘你学习的潜力。

4.听课中注意老师讲解时的数学思想,多问为什么要这样思考,这样的方法怎样是产生的?

5.把概念回归自然。所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、直角坐标系的产生、极坐标系的产生都是从实际生活中抽象出来的。只有回归现实才能使对概念的理解切实可靠,在应用概念判断、推理时会准确。

二、养成良好的学习数学习惯。
建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。使自己的数学学习习惯于数学课堂学习的各个环节相适应。

三、及时了解、掌握常用的数学思想和方法
学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。

1、注意化归转化思想学习。

人们学习过程就是用掌握的知识去理解、解决未知知识。数学学习过程都是用旧知识引出和解决新问题,当新的知识掌握后再利用它去解决更新知识。初中知识是基础,如果能把新知识用旧知识解答,你就有了化归转化思想了。可见,学习就是不断地化归转化,不断地继承和发展更新旧知识。

2、学会数学教材的数学思想方法。

学会数学教材的数学思想方法。数学教材是采用蕴含披露的方式将数学思想溶于数学知识体系中,因此,适时对数学思想作出归纳、概括是十分必要的。概括数学思想一般可分为两步进行:一是揭示数学思想内容规律,即将数学对象其具有的属性或关系抽取出来,二是明确数学思想方法知识的联系,抽取解决全体的框架。实施这两步的措施可在课堂的听讲和课外的自学中进行。

课堂学习是数学学习的主战场。课堂中教师通过讲解、分解教材中的数学思想和进行数学技能地训练,使高中学生学习所得到丰富的数学知识,教师组织的科研活动,使教材中的数学概念、定理、原理得到最大程度的理解、挖掘。如初中学习的相反数概念教学中,教师的课堂教学往往有以下理解:

①从定义角度求3、-5的相反数,相反数是的数是_____.

②从数轴角度理解:什么样的两点表示数是互为相反数的。(关于原点对称的点)

③从绝对值角度理解:绝对值_______的两个数是互为相反数的。

④相加为零的两个数互为相反数吗?

这些不同角度的教学会开阔学生思维,提高思维品质。望同学们把握好课堂这个学习的主战场。

解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。

四、逐步形成 “以我为主”的学习模式
数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神;正确对待学习中的困难和挫折,败不馁,胜不骄,养成积极进取,不屈不挠,耐挫折的优良心理品质;在学习过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,注重新旧知识间的内在联系,不满足于现成的思路和结论,经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。

五、针对自己的学习情况,采取一些具体的措施
记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。

建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。

熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。

经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化, 使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。

阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。

及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。

学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。

经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。

无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,这是学好数学的重要问题。

要上升到对数学思想方法的研习
简单地说,思想是方法中的方法,方法是思想的具体实现。思想内在地统一各种方法,是方法的萌芽阶段;方法必然受思想的指导支配,是思想的具体实现。基于思想方法的辩证统一,在这里我将结合数学基础知识的研习,一并探讨数学思想方法的研习。

前人已为我们总结归纳论述了大量的数学思想方法,现在的问题是如何把这些别人的思想方法变成自己的思想方法。

一、大量收集整理
大量收集、整理各种各样的数学思想方法,网络上的、书籍上的都要。问题是思想方法也是无穷无尽的,这个收集整理阶段要到什么时候才能结束?一个判断方法就是,出现重复,重复到一定程度就可以适可而止了。我们还可以以重复的程度来判断数学思想方法的普遍性与重要性。

二、初步归类总结
按照一定的标准根据进行初步归纳分类总结,形成一个大致的体系网络框架。下面挂一漏万地阐述一下。

如按应用领域可划分为:数学研究方法、数学学习方法、数学教学方法。按普遍性程度可划分为:哲学方法论、一般科学方法论、具体科学方法论。数学方法至少包含上面的三个领域、三个层次。它们相互联系,表现为相互渗透相互转化。我们就是要通过初步的归纳分类总结来初步把握揭示它们之间的联系。

如抽象与概括、归纳与演绎、归类与分类、比较与类比、分析与综合,既可认为是哲学方法论层次的也可认为是一般科学方法论层次的,两者之间只有一条很细的线,如果你站在哲学的高度来反思论证阐述,那它就是哲学方法论;如果你着眼于如何在科学上具体运用完善,那它就是一般科学方法论。

抽象与概括在数学上主要表现为理想化与模型化方法;归纳与演绎在数学上主要表现为数学归纳法与公理化和形式化方法;比较与类比在数学上是一种很重要的数学猜想方法;其实各种数学方法都是各种哲学方法的组合,并不是像上面表现的那样简单化、线性化。如公理化与形式化方法就主要包含了演绎、抽象;数学模型法也包含了抽象、分类、演绎、还有计算。

初步总结如下:

数学的根本思想方法

1.抽象与概括:理想化方法、模型化方法

2.归纳与演绎:数学归纳法、公理化方法、形式化方法

3.比较与类比:数学猜想方法

4.分析与综合:分析法与综合法

5.归类与分类:等价划分法、分类讨论法

数学特有的思想方法

1.集合思想方法:

2.映射思想方法:对应、函数、RMI(关系映射反映原则)

3.其它思想方法:化归法、构造法、递归法、迭代法、数形结合、方程法

4.数学解题方法:反证法、换元法、待定系数法、配方法、消元法、因式分解法

虽说是挂一漏万,但提到的都是重要的。

三、击破数学基础
现代数学有大量吸引人的理论,每每想深入研习,总感基础薄弱,难以进步,真有寸步难行之感。一定要在学习数学基础知识的每一个阶段,集中主要精力各个击破。通过较为浅易的基础知识的学习来体会掌握总结普遍的重要的数学思想方法,通过做数学来学数学。在做数学的过程中要深刻体会体验领悟数学的思想方法,只有经过这一个过程才能使别人的数学方法变成自己的思想方法。

四、逐步完善优化
要逐步形成自己的思想方法论体系,就要对各种思想方法进行融会贯通,逐步系统化、网络化、丰富化。这就务必要求加强自身的哲学修养和数学修养。要通过各种渠道,精选一些相关的大师经典原著来研读。“吾尝终日而思矣,不如须臾之所学”“听君一席话,胜读十年书”,只有研读大师经典原著才能够起到这样的作用与效果。此外,还要不断地与做数学结合起来。
乒乓跳豆
高赞答主

2006-04-05 · 一个有才华的人
知道顶级答主
回答量:5.3万
采纳率:46%
帮助的人:2.8亿
展开全部
怎样才能学好数学
★怎样才能学好数学?
要回答这个似乎非常简单:把定理、公式都记住,勤思好问,多做几道题,不就行了。
事实上并非如此,比如:有的同学把书上的黑体字都能一字不落地背下来,可就是不会用;有的同学不重视知识、方法的产生过程,死记结论,生搬硬套;有的同学眼高手低,“想”和“说”都没问题,一到“写”和“算”,就漏洞百出,错误连篇;有的同学懒得做题,觉得做题太辛苦,太枯燥,负担太重;也有的同学题做了不少,辅导书也看了不少,成绩就是上不去,还有的同学复习不得力,学一段、丢一段。
究其原因有两个:一是学习态度问题:有的同学在学习上态度暧昧,说不清楚是进取还是退缩,是坚持还是放弃,是维持还是改进,他们勤奋学习的决心经常动摇,投入学习的精力也非常有限,思维通常也是被动的、浅层的和粗放的,学习成绩也总是徘徊不前。反之,有的同学学习目的明确,学习动力强劲,他们拥有坚韧不拔的意志、刻苦钻研的精神和自主学习的意识,他们总是想方设法解决学习中遇到的困难,主动向同学、老师求教,具有良好的自我认识能力和创造学习条件的能力。二是学习方法问题:有的同学根本就不琢磨学习方法,被动地跟着老师走,上课记笔记,下课写作业,机械应付,效果平平;有的同学今天试这种方法、明天试那种方法,“病急乱投医”,从不认真领会学习方法的实质,更不会将多种学习方法融入自己的日常学习环节,养成良好的学习习惯;更多的同学对学习方法存在片面的、甚至是错误的理解,比如,什么叫“会了”?是“听懂了”还是“能写了”,或者是“会讲了”?这种带有评价性的体验,对不同的学生来说,差异是非常大的,这种差异影响着学生的学习行为及其效果。
由此可见,正确的学习态度和科学的学习方法是学好数学的两大基石。这两大基石的形成又离不开平时的数学学习实践,下面就几个数学学习实践中的具体问题谈一谈如何学好数学。

一、数学运算
运算是学好数学的基本功。初中阶段是培养数学运算能力的黄金时期,初中代数的主要内容都和运算有关,如有理数的运算、整式的运算、因式分解、分式的运算、根式的运算和解方程。初中运算能力不过关,会直接影响高中数学的学习:从目前的数学评价来说,运算准确还是一个很重要的方面,运算屡屡出错会打击学生学习数学的信心,从个性品质上说,运算能力差的同学往往粗枝大叶、不求甚解、眼高手低,从而阻碍了数学思维的进一步发展。从学生试卷的自我分析上看,会做而做错的题不在少数,且出错之处大部分是运算错误,并且是一些极其简单的小运算,如71-19=68,(3+3)2=81等,错误虽小,但决不可等闲视之,决不能让一句“马虎”掩盖了其背后的真正原因。帮助学生认真分析运算出错的具体原因,是提高学生运算能力的有效手段之一。在面对复杂运算的时候,常常要注意以下两点:
①情绪稳定,算理明确,过程合理,速度均匀,结果准确;
②要自信,争取一次做对;慢一点,想清楚再写;少心算,少跳步,草稿纸上也要写清楚。

二、数学基础知识
理解和记忆数学基础知识是学好数学的前提。
★什么是理解?
按照建构主义的观点,理解就是用自己的话去解释事物的意义,同一个数学概念,在不同学生的头脑中存在的形态是不一样的。所以理解是个体对外部或内部信息进行主动的再加工过程,是一种创造性的“劳动”。
理解的标准是“准确”、“简单”和“全面”。“准确”就是要抓住事物的本质;“简单”就是深入浅出、言简意赅;“全面”则是“既见树木,又见森林”,不重不漏。对数学基础知识的理解可以分为两个层面:一是知识的形成过程和表述;二是知识的引申及其蕴涵的数学思想方法和数学思维方法。
★什么是记忆?
一般地说,记忆是个体对其经验的识记、保持和再现,是信息的输入、编码、储存和提取。借助关键词或提示语尝试回忆的方法是一种比较有效的记忆方法,比如,看到“抛物线”三个字,你就会想到:抛物线的定义是什么?标准方程是什么?抛物线有几个方面的性质?关于抛物线有哪些典型的数学问题?不妨先写下所想到的内容,再去查找、对照,这样印象就会更加深刻。另外,在数学学习中,要把记忆和推理紧密结合起来,比如在三角函数一章中,所有的公式都是以三角函数定义和加法定理为基础的,如果能在记忆公式的同时,掌握推导公式的方法,就能有效地防止遗忘。
总之,分阶段地整理数学基础知识,并能在理解的基础上进行记忆,可以极大地促进数学的学习。

三、数学解题
学数学没有捷径可走,保证做题的数量和质量是学好数学的必由之路。
1、如何保证数量?
① 选准一本与教材同步的辅导书或练习册。
② 做完一节的全部练习后,对照答案进行批改。千万别做一道对一道的答案,因为这样会造成思维中断和对答案的依赖心理;先易后难,遇到不会的题一定要先跳过去,以平稳的速度过一遍所有题目,先彻底解决会做的题;不会的题过多时,千万别急躁、泄气,其实你认为困难的题,对其他人来讲也是如此,只不过需要点时间和耐心;对于例题,有两种处理方式:“先做后看”与“先看后测”。
③选择有思考价值的题,与同学、老师交流,并把心得记在自习本上。
④每天保证1小时左右的练习时间。
2、如何保证质量?
①题不在多,而在于精,学会“解剖麻雀”。充分理解题意,注意对整个问题的转译,深化对题中某个条件的认识;看看与哪些数学基础知识相联系,有没有出现一些新的功能或用途?再现思维活动经过,分析想法的产生及错因的由来,要求用口语化的语言真实地叙述自己的做题经过和感想,想到什么就写什么,以便挖掘出一般的数学思想方法和数学思维方法;一题多解,一题多变,多元归一。
②落实:不仅要落实思维过程,而且要落实解答过程。
③复习:“温故而知新”,把一些比较“经典”的题重做几遍,把做错的题当作一面“镜子”进行自我反思,也是一种高效率的、针对性较强的学习方法。

四、数学思维
数学思维与哲学思想的融合是学好数学的高层次要求。比如,数学思维方法都不是单独存在的,都有其对立面,并且两者能够在解决问题的过程中相互转换、相互补充,如直觉与逻辑,发散与定向、宏观与微观、顺向与逆向等等,如果我们能够在一种方法受阻的情况下自觉地转向与其对立的另一种方法,或许就会有“山重水复疑无路,柳暗花明又一村”的感觉。比如,在一些数列问题中,求通项公式和前n项和公式的方法,除了演绎推理外,还可用归纳推理。应该说,领悟数学思维中的哲学思想和在哲学思想的指导下进行数学思维,是提高学生数学素养、培养学生数学能力的重要方法。
总而言之,只要我们重视运算能力的培养,扎扎实实地掌握数学基础知识,学会聪明地做题,并且能够站到哲学的高度去反思自己的数学思维活动,我们就一定能早日进入数学学习的自由王国。

参考资料: 百度

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
sjx2551683
2006-04-06 · TA获得超过239个赞
知道小有建树答主
回答量:430
采纳率:0%
帮助的人:253万
展开全部
3.记录证题途径的各个关键步骤

4.总结证明思路,使证题过程在大脑中形成清淅的印象

初中数学基础知识的学习
一、数学概念学习方法
数学中有许多概念,如何让学生正确地掌握概念,应该指明学习概念需要怎样的一个过程,应达到什么程度。数学概念是反映数学对象本质属性的思维形式,它的定义方式有描述性的,指明外种延的,有种概念加类差等方式。一个数学概念需要记住名称,叙述出本质属性,体会出所涉及的范围,并应用概念准确进行判断。这些问题老师没有要求,不给出学习方法,学生将很难有规律地进行学习。

下面我们归纳出数学概念的学习方法:

1.阅读概念,记住名称或符号。

2.背诵定义,掌握特性。

3.举出正反实例,体会概念反映的范围。

4.进行练习,准确地判断。

二、数学定理的学习方法
一个定理包含条件和结论两部分,定理必须进行证明,证明过程是连接条件和结论的桥梁,而学习定理是为了更好地应用它解决各种问题。

下面我们归纳出数学定理的学习方法:

1.背诵定理。

2.分清定理的条件和结论。

3.理解定理的证明过程。

4.应用定理证明有关问题。

5.体会定理与有关定理和概念的内在关系。

有的定理包含公式,如韦达定理、勾股定理、正弦定理,它们的学习还应该同数公式的学习方法结合起来进行。

三、学公式的学习方法
公式具有抽象性,公式中的字母代表一定范围内的无穷多个数。有的学生在学习公式时,可以在短时间内掌握,而有的学生却要反来复去地体会,才能跳出千变万化的数字关系的泥堆里。教师应明确告诉学生学习公式过程需要的步骤,使学生能够迅速顺利地掌握公式。

我们介绍的数学公式的学习方法是:

1.书写公式,记住公式中字母间的关系。

2.懂得公式的来龙去脉,掌握推导过程。

3.用数字验算公式,在公式具体化过程中体会公式中反映的规律。

4.将公式进行各种变换,了解其不同的变化形式。

5.将公式中的字母想象成抽象的框架,达到自如地应用公式。

数学概念的学习方法
1.找出核心概念。

2.找出非核心概念。

3.联系:找出核心概念和非核心概念的具体关系。彻底弄清楚核心概念是怎样从非核心概念中得来的。

4.定义:自己用非核心概念定义核心概念,这一步要求要做到:简洁、清晰、精确。

5.反思:核心概念又没有其它定义方法,又没有更好的定义方法。

四轮学习法
四步学习法
1.理解:内容,标志,阶段,过程。

2.巩固:透彻理解,牢固记忆,多方联想,合理复习。

3.应用:理论,实践,具体,综合。

4.系统化:

①明确系统内部各要素的属性。

②使各要素之间形成多方的联系。

③概括各要素的各种属性,形成整体性。

④同化于原知识系统之中。

四轮复习法:
①通读,进行系统复习;

②精读,进行重点复习;

③演练,进行解题复习;

④回忆,进行检验复习。

四步解题法:
①审题,搞清是什么;

②构思,搞清为什么;

③解答,搞清怎么办;

④检验,验证怎么样。

四步记忆法:记忆、保持、再认、再现。

这些看似常见的步骤,但一旦能够照步执行,学习效果就会立即显示出来。

高中数学学习方法
一、 有良好的学习兴趣
两千多年前孔子说过:“知之者不如好之者,好之者不如乐之者。”意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。“好”和“乐”就是愿意学,喜欢学,这就是兴趣。兴趣是最好的老师,有兴趣才能产生爱好,爱好它就要去实践它,达到乐在其中,有兴趣才会形成学习的主动性和积极性。在数学学习中,我们把这种从自发的感性的乐趣出发上升为自觉的理性的“认识”过程,这自然会变为立志学好数学,成为数学学习的成功者。那么如何才能建立好的学习数学兴趣呢?

1.课前预习,对所学知识产生疑问,产生好奇心。

2.听课中要配合老师讲课,满足感官的兴奋性。听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。

3.思考问题注意归纳,挖掘你学习的潜力。

4.听课中注意老师讲解时的数学思想,多问为什么要这样思考,这样的方法怎样是产生的?

5.把概念回归自然。所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、直角坐标系的产生、极坐标系的产生都是从实际生活中抽象出来的。只有回归现实才能使对概念的理解切实可靠,在应用概念判断、推理时会准确。

二、养成良好的学习数学习惯。
建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。使自己的数学学习习惯于数学课堂学习的各个环节相适应。

三、及时了解、掌握常用的数学思想和方法
学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。

1、注意化归转化思想学习。

人们学习过程就是用掌握的知识去理解、解决未知知识。数学学习过程都是用旧知识引出和解决新问题,当新的知识掌握后再利用它去解决更新知识。初中知识是基础,如果能把新知识用旧知识解答,你就有了化归转化思想了。可见,学习就是不断地化归转化,不断地继承和发展更新旧知识。

2、学会数学教材的数学思想方法。

学会数学教材的数学思想方法。数学教材是采用蕴含披露的方式将数学思想溶于数学知识体系中,因此,适时对数学思想作出归纳、概括是十分必要的。概括数学思想一般可分为两步进行:一是揭示数学思想内容规律,即将数学对象其具有的属性或关系抽取出来,二是明确数学思想方法知识的联系,抽取解决全体的框架。实施这两步的措施可在课堂的听讲和课外的自学中进行。

课堂学习是数学学习的主战场。课堂中教师通过讲解、分解教材中的数学思想和进行数学技能地训练,使高中学生学习所得到丰富的数学知识,教师组织的科研活动,使教材中的数学概念、定理、原理得到最大程度的理解、挖掘。如初中学习的相反数概念教学中,教师的课堂教学往往有以下理解:

①从定义角度求3、-5的相反数,相反数是的数是_____.

②从数轴角度理解:什么样的两点表示数是互为相反数的。(关于原点对称的点)

③从绝对值角度理解:绝对值_______的两个数是互为相反数的。

④相加为零的两个数互为相反数吗?

这些不同角度的教学会开阔学生思维,提高思维品质。望同学们把握好课堂这个学习的主战场。

解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。

四、逐步形成 “以我为主”的学习模式
数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神;正确对待学习中的困难和挫折,败不馁,胜不骄,养成积极进取,不屈不挠,耐挫折的优良心理品质;在学习过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,注重新旧知识间的内在联系,不满足于现成的思路和结论,经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。

五、针对自己的学习情况,采取一些具体的措施
记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。

建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。

熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。

经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化, 使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。

阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。

及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。

学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。

经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。

无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,这是学好数学的重要问题。

要上升到对数学思想方法的研习
简单地说,思想是方法中的方法,方法是思想的具体实现。思想内在地统一各种方法,是方法的萌芽阶段;方法必然受思想的指导支配,是思想的具体实现。基于思想方法的辩证统一,在这里我将结合数学基础知识的研习,一并探讨数学思想方法的研习。

前人已为我们总结归纳论述了大量的数学思想方法,现在的问题是如何把这些别人的思想方法变成自己的思想方法。

一、大量收集整理
大量收集、整理各种各样的数学思想方法,网络上的、书籍上的都要。问题是思想方法也是无穷无尽的,这个收集整理阶段要到什么时候才能结束?一个判断方法就是,出现重复,重复到一定程度就可以适可而止了。我们还可以以重复的程度来判断数学思想方法的普遍性与重要性。

二、初步归类总结
按照一定的标准根据进行初步归纳分类总结,形成一个大致的体系网络框架。下面挂一漏万地阐述一下。

如按应用领域可划分为:数学研究方法、数学学习方法、数学教学方法。按普遍性程度可划分为:哲学方法论、一般科学方法论、具体科学方法论。数学方法至少包含上面的三个领域、三个层次。它们相互联系,表现为相互渗透相互转化。我们就是要通过初步的归纳分类总结来初步把握揭示它们之间的联系。

如抽象与概括、归纳与演绎、归类与分类、比较与类比、分析与综合,既可认为是哲学方法论层次的也可认为是一般科学方法论层次的,两者之间只有一条很细的线,如果你站在哲学的高度来反思论证阐述,那它就是哲学方法论;如果你着眼于如何在科学上具体运用完善,那它就是一般科学方法论。

抽象与概括在数学上主要表现为理想化与模型化方法;归纳与演绎在数学上主要表现为数学归纳法与公理化和形式化方法;比较与类比在数学上是一种很重要的数学猜想方法;其实各种数学方法都是各种哲学方法的组合,并不是像上面表现的那样简单化、线性化。如公理化与形式化方法就主要包含了演绎、抽象;数学模型法也包含了抽象、分类、演绎、还有计算。

初步总结如下:

数学的根本思想方法

1.抽象与概括:理想化方法、模型化方法

2.归纳与演绎:数学归纳法、公理化方法、形式化方法

3.比较与类比:数学猜想方法

4.分析与综合:分析法与综合法

5.归类与分类:等价划分法、分类讨论法

数学特有的思想方法

1.集合思想方法:

2.映射思想方法:对应、函数、RMI(关系映射反映原则)

3.其它思想方法:化归法、构造法、递归法、迭代法、数形结合、方程法

4.数学解题方法:反证法、换元法、待定系数法、配方法、消元法、因式分解法

虽说是挂一漏万,但提到的都是重要的。

三、击破数学基础
现代数学有大量吸引人的理论,每每想深入研习,总感基础薄弱,难以进步,真有寸步难行之感。一定要在学习数学基础知识的每一个阶段,集中主要精力各个击破。通过较为浅易的基础知识的学习来体会掌握总结普遍的重要的数学思想方法,通过做数学来学数学。在做数学的过程中要深刻体会体验领悟数学的思想方法,只有经过这一个过程才能使别人的数学方法变成自己的思想方法。

四、逐步完善优化
要逐步形成自己的思想方法论体系,就要对各种思想方法进行融会贯通,逐步系统化、网络化、丰富化。这就务必要求加强自身的哲学修养和数学修养。要通过各种渠道,精选一些相关的大师经典原著来研读。“吾尝终日而思矣,不如须臾之所学”“听君一席话,胜读十年书”,只有研读大师经典原著才能够起到这样的作用与效果。此外,还要不断地与做数学结合起来。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
joeswy
2006-04-04 · TA获得超过255个赞
知道小有建树答主
回答量:223
采纳率:0%
帮助的人:62.8万
展开全部
和父母谈一谈,告诉他们你目前的数学状况,如果觉得靠自己的努力还不能弄懂数学的话,有必要去请个家教辅导一下。(个人感觉补小课比较有效,上大课不能针对你个人的数学问题,只是在浪费时间)。该补的就补,该问的就问。作业要自己做,不要抄同学的,记住,不管你考的有多糟糕,那也是你自己的做的,发现问题才能想办法解决问题,初二还不晚,还有时间补缺补差,不要为了面子或是为了父母不唠叨而去抄别人的作业或试卷,这样虽然能瞒过一时,却不能瞒到你中考,毕竟读书是为自己。我想既然你其他的功课都还可以,那就是说你的智商没问题,数学是有能力学好的,所以要加油哦!
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
安徽万通高级技工学校
2021-07-27 · 技能让生活更美好,从万通走向世界
安徽万通高级技工学校
安徽万通汽车专修学院,隶属于新华教育集团,坐落于科教名城合肥市,始建于1988年,是汽车技术人才定点培养基地、汽车行业示范职教集团、汽车职教集团常务理事单位。汽车工程学会理事单位。
向TA提问
展开全部
中考仅仅是人生的一个转折点,每个人都是一个一个独立的个体,中考失利,你可以选择上私立高中,也可以选择上职业学校,有的地方是允许复读的哈。
除此之外,还可以学一些热门专业,比如说智能网联,比如说新能源汽车,都可以哈。
中考加油
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(5)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式