求解题!! 已知函数f(x)=2-(√3sinx-cosx)^2
(1)求f(π/3)的值和f(x)的最小正周期(2)f(x)在[-π/6,π/3]上的最大值和最小值。求详细过程。...
(1)求f(π/3)的值和f(x)的最小正周期 (2)f(x)在[-π/6,π/3]上的最大值和最小值。 求详细过程。
展开
2个回答
展开全部
答:
f(x)=2-(√3sinx-cosx)²
=2-3sin²x+2√3sinxcosx-cos²x
=2-3(1-cos²x)+√3sin2x-cos²x
=2cos²x-1+√3sin2x
=cos2x+√3sin2x
=2 [ (1/2)cos2x+(√3/2)sin2x]
=2sin(2x+π/6)
(1)f(π/3)=2sin(2π/3+π/6)=1
f(x)的最小正周期T=2π/2=π
(2)-π/6<=x<=π/3,-π/3<=2x<=2π/3
所以:-π/6<=2x+π/6<=5π/6
所以:-1/2<=sin(2x+π/6)<=1
所以:f(x)的最大值为2,最小值为-1
f(x)=2-(√3sinx-cosx)²
=2-3sin²x+2√3sinxcosx-cos²x
=2-3(1-cos²x)+√3sin2x-cos²x
=2cos²x-1+√3sin2x
=cos2x+√3sin2x
=2 [ (1/2)cos2x+(√3/2)sin2x]
=2sin(2x+π/6)
(1)f(π/3)=2sin(2π/3+π/6)=1
f(x)的最小正周期T=2π/2=π
(2)-π/6<=x<=π/3,-π/3<=2x<=2π/3
所以:-π/6<=2x+π/6<=5π/6
所以:-1/2<=sin(2x+π/6)<=1
所以:f(x)的最大值为2,最小值为-1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询