7个回答
展开全部
若f(x)与g(x)关于点(a,b)对称,设f(x)上任意一点(x,y),则(x,y)关于(a,b)对称的点(m,n)在g(x)上,其中a=(x+m)/2,b=(y+n)/2.(中点坐标公式)。
若点A,B的坐标分别为(x₁,y₁),(x₂,y₂),则线段AB的中点C的坐标为.
(X,Y)=(x₁+x₂)/2,(y₁+y₂)/2
此公式为线段AB的中点坐标公式。
扩展资料
函数的特性
1、有界性
设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无界 [3] 。
2、单调性
设函数f(x)的定义域为D,区间I包含于D。如果对于区间上任意两点x1及x2,当x1<x2时,恒有f(x1)<f(x2),则称函数f(x)在区间I上是单调递增的。
如果对于区间I上任意两点x1及x2,当x1<x2时,恒有f(x1)>f(x2),则称函数f(x)在区间I上是单调递减的。单调递增和单调递减的函数统称为单调函数。
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐于2017-11-25
展开全部
若f(x)与g(x)关于点(a,b)对称,设f(x)上任意一点(x,y),则(x,y)关于(a,b)对称的点(m,n)在g(x)上,其中a=(x+m)/2,b=(y+n)/2.(中点坐标公式)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-07-16
展开全部
1,可以画出两个函数的图象,如果相交画出即可,如果不相交,利用3点确定一平面的原则,画出该对称点的延长线即可得出
2,如果两函数相交,可利用两函数公式组方程组解出,如不相交可用反函数解出,或利用一函数代求法解出两函数的对称点
2,如果两函数相交,可利用两函数公式组方程组解出,如不相交可用反函数解出,或利用一函数代求法解出两函数的对称点
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-07-16
展开全部
已知一个函数的图像,你可以根据两点中点的坐标公式(x1+x2)/2=中点的坐标,进而求出所要求的涵数的坐标值
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
假如一点横坐标x,纵坐标y,关于它对称两点横坐标和的一半等于x,纵坐标和的一半等于y,那么你设函数图像上一点(x0,y0),对称点坐标就能表示出来,利用点在曲线上就能求解。由于没有具体题目,只能这么讲
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询