一阶全微分形式的不变性
一阶微分形式不变性是指:无论u,v是自变量还是中间变量,函数z=f(u,v)的全微分形式是一样的。
此性质的好处是:一方面是可以不用区分变量直接利用一元函数的微分性质计算;另一方面是不用区分变量是自变量、因变量还是中间变量,以及它们的结构问题就可以利用微分性质直接计算。
隐函数存在定理是微积分中的难点,一般的教材介绍这一部分时,尽管对定理的证明不做要求,但是推导偏导数的过程复杂,公式繁多,导致许多学生在求隐函数的偏导数时,常会出错,但若利用一阶微分的形式不变性对方程两边同时求微分,则可减少此类错误。
设y=f(u),u=g(x),如果u=g(x)对x可微,y=f(u)对相应的u可微,则y=f[g(x)]对x可微,为dy = f[g(x)]’dx = f’(u)g’(x)dx = f’(u)du可以知道,无论u是自变量还是别的自变量的可微函数,微分形式dy=f’(u)du保持不变.这就是一阶全微分的形式不变性.
通俗的说就是 当z=z(u,v)可微 u=u(x,y) v=v(x,y)也可微 时 复合函数 z=z(u(x,y),v(x,y))可微 且 z的全微分形式不变 既 dz=(z对u求偏导)*du+(z对v求偏导)*dv=(z对x求偏导)*dx+(z对y求偏导)*dy