柯西数列收敛的充要条件是什么?

 我来答
教育小百科达人
2023-01-26 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:471万
展开全部

具体回答如下:

lim(x趋向于0+)x^tanx

=e^lim(x趋向于0+)lnx^tanx

=e^lim(x趋向于0+)lnx*tanx

=e^lim(x趋向于0+)lnx/cotx (∞/∞)

=e^lim(x趋向于0+)(1/x)/(-csc^2x)

=e^lim(x趋向于0+)-sinx

=e^0

=1

极限函数的意义:

在区间(a-ε,a+ε)之外至多只有N个(有限个)点所有其他的点xN+1,xN+2,...(无限个)都落在该邻域之内。这两个条件缺一不可,如果一个数列能达到这两个要求,则数列收敛于a。

设{xn} 是一个数列,如果对任意ε>0,存在N∈Z*,只要 n 满足 n > N,则对于任意正整数p,都有|xn+p-xn|<ε,这样的数列{xn} 便称为柯西数列。这种渐进稳定性与收敛性是等价的,即为充分必要条件。

与子列的关系,数列{xn} 与它的任一平凡子列同为收敛或发散,且在收敛时有相同的极限;数列{xn} 收敛的充要条件是:数列{xn} 的任何非平凡子列都收敛。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式