在直角坐标系xOy中,以O为圆心的圆与直线x-根号(3)y=4相切。
过直线l上的一点A作角BAC=π/3,边AB过圆心O,且B,C在圆O上(1)求圆O的方程(2)求点A的横坐标的取值范围详细步骤解答...
过直线l上的一点A作角BAC=π/3,边AB过圆心O,且B,C在圆O上
(1)求圆O的方程
(2)求点A的横坐标的取值范围
详细步骤解答 展开
(1)求圆O的方程
(2)求点A的横坐标的取值范围
详细步骤解答 展开
展开全部
第一题用点到直线的距离公式求R就行
圆与直线x-√3y=4相切,说明O到直线的距离为R
点P(x0,y0),直线方程Ax+By+C=0
点到直线的距离公式
d=|Ax0+By0+C|/[√(A^2+B^2)]
(1)R=I 0-√3*0-4 I/√1平方+(-√3)平方=2
所以圆的标准方程为
x^2+y^2=4
(2)A(-2,0)、B(2,0)
P(x,y),R=2
PA=(-2-x,-y)
PO=(x,y)
PB=(2-x,-y)
|PO|=√(x^2+y^2)<2(圆的半径)
所以
0<x^2+y^2<2
|PO|^2=|PA|*|PB|
(x^2+y^2)^2=[(x+2)^2+y^2]*[(x-2)^2+y^2]
x^2-y^2=2
x^2=2-y^2
y∈(-2,2)
y^2∈(0,4)
|PA||PB|=(-2-x,-y)*(2-x,-y)
=x^2-4+y^2=x^2+y^2-4<0
又x^2+y^2-4=2(y^2-1)>-2
∴-2<|PA||PB|<0
圆与直线x-√3y=4相切,说明O到直线的距离为R
点P(x0,y0),直线方程Ax+By+C=0
点到直线的距离公式
d=|Ax0+By0+C|/[√(A^2+B^2)]
(1)R=I 0-√3*0-4 I/√1平方+(-√3)平方=2
所以圆的标准方程为
x^2+y^2=4
(2)A(-2,0)、B(2,0)
P(x,y),R=2
PA=(-2-x,-y)
PO=(x,y)
PB=(2-x,-y)
|PO|=√(x^2+y^2)<2(圆的半径)
所以
0<x^2+y^2<2
|PO|^2=|PA|*|PB|
(x^2+y^2)^2=[(x+2)^2+y^2]*[(x-2)^2+y^2]
x^2-y^2=2
x^2=2-y^2
y∈(-2,2)
y^2∈(0,4)
|PA||PB|=(-2-x,-y)*(2-x,-y)
=x^2-4+y^2=x^2+y^2-4<0
又x^2+y^2-4=2(y^2-1)>-2
∴-2<|PA||PB|<0
追问
第二问问的是A的横坐标的取值范围
2013-07-19
展开全部
(1)R=I 0-√3*0-4 I/√1平方+(-√3)平方=2
所以圆的标准方程为
x^2+y^2=4
(2)A(-2,0)、B(2,0)
P(x,y),R=2
PA=(-2-x,-y)
PO=(x,y)
PB=(2-x,-y)
|PO|=√(x^2+y^2)<2(圆的半径)
所以
0<x^2+y^2<2
|PO|^2=|PA|*|PB|
(x^2+y^2)^2=[(x+2)^2+y^2]*[(x-2)^2+y^2]
x^2-y^2=2
x^2=2-y^2
y∈(-2,2)
y^2∈(0,4)
|PA||PB|=(-2-x,-y)*(2-x,-y)
=x^2-4+y^2=x^2+y^2-4<0
又x^2+y^2-4=2(y^2-1)>-2
∴-2<|PA||PB|<0
所以圆的标准方程为
x^2+y^2=4
(2)A(-2,0)、B(2,0)
P(x,y),R=2
PA=(-2-x,-y)
PO=(x,y)
PB=(2-x,-y)
|PO|=√(x^2+y^2)<2(圆的半径)
所以
0<x^2+y^2<2
|PO|^2=|PA|*|PB|
(x^2+y^2)^2=[(x+2)^2+y^2]*[(x-2)^2+y^2]
x^2-y^2=2
x^2=2-y^2
y∈(-2,2)
y^2∈(0,4)
|PA||PB|=(-2-x,-y)*(2-x,-y)
=x^2-4+y^2=x^2+y^2-4<0
又x^2+y^2-4=2(y^2-1)>-2
∴-2<|PA||PB|<0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询