2013-07-17
展开全部
由已知可知 X*X+√2 * Y=√3,Y*Y+√2 * X=√3两式相减,则有 X*X+√2 * Y =Y*Y+√2 * X ==> (X*X-Y*Y)= √2 * (X-Y) ==> (X-Y)*(X+Y)=√2 * (X-Y) [因为X≠Y] ==> X+Y = √2两式相加,则有 X*X+√2 * Y + Y*Y+√2 * X = 2√3 ==> (X*X + Y*Y)+(√2 * X+√2 * Y) = 2√3 ==> [(X + Y)^2 - 2XY] + √2 * (X+Y) = 2√3 ==> (√2)^2 -2XY + √2 * √2 = 2√3 ==> 4 - 2XY = 2√3 ==> XY = 2 - √3所以 XY = 2 - √3 。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询