为什么lim (x趋于0)(1+x)^(1/x)等于e?

 我来答
晴晴知识加油站
高能答主

2019-06-30 · 让梦想飞扬,让生命闪光。
晴晴知识加油站
采纳数:3595 获赞数:661340

向TA提问 私信TA
展开全部

因为x趋于0,所以lim[(1+x)^(1/x)]=lim(1+x)^∞=e

解题过程如下:

原式 = lim (e^(ln(1+x)/x) -e)/x

=lim e(e^(ln(1+x)/x - 1) -1 ) /x

=lim e(ln(1+x)/x -1)/x

=e lim (ln(1+x)-x)/x²

=e lim (1/(1+x)-1) / 2x

=e lim -x/(2x(1+x))

=lim[(1+x)^(1/x)]

=lim(1+x)^∞

=e

扩展资料

求函数极限的方法:

利用函数连续性,直接将趋向值带入函数自变量中,此时要要求分母不能为0。

当分母等于零时,就不能将趋向值直接代入分母,因式分解,通过约分使分母不会为零。若分母出现根号,可以配一个因子使根号去除。

如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)。

采用洛必达法则求极限,当遇到分式0/0或者∞/∞时可以采用洛必达,其他形式也可以通过变换成此形式。符合形式的分式的极限等于分式的分子分母同时求导。

蔷祀
高粉答主

2019-06-07 · 关注我不会让你失望
知道小有建树答主
回答量:552
采纳率:100%
帮助的人:15.3万
展开全部

解:本题利用了洛必达法则进行求解。

首先需要设y=(1+1/x)^x, 

两边同时取自然对数得 lny=xln(1+1/x)=[ln(1+1/x)]/(1/x) 

由洛必达法则lny=lim【x→∞】[ln(1+1/x)]/(1/x)=[1/(1+1/x)] (1/x) '/(1/x)'=1/(1+1/x)=1 

所以y=e【x→∞】 即lim(x→∞) (1+1/x)^x=e。

扩展资料

洛必达法则的应用条件:

一是分子分母的极限是否都等于零(或者无穷大);

二是分子分母在限定的区域内是否分别可导。

如果这两个条件都满足,接着求导并判断求导之后的极限是否存在:如果存在,直接得到答案;如果不存在,则说明此种未定式不可用洛必达法则来解决;如果不确定,即结果仍然为未定式,再在验证的基础上继续使用洛必达法则。

参考资料来源:百度百科- 洛必达法则

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
ichbinsonja
2011-09-04 · 超过11用户采纳过TA的回答
知道答主
回答量:23
采纳率:0%
帮助的人:8.6万
展开全部
如果需要证明的话,有一个简单方法:

1. (1-1/x)^(-x)=1/((1-1/x)^x)
2. 为了打字方便,只看分母,也就是(1-1/x)^x=exp(ln((1-1/x)^x)))=exp(x*ln(1-1/x))=exp((ln(1-1/x))/(1/x)),令1/x=t,也就是=exp((ln(1-t))/t) (注意括号的层数)
3. 用洛比达法则:因为分子分母在x趋向正无穷的时候的极限都为0,所以上下求导,lim ln(1-t))/t=lim(-1/(1-t))/1=-1
4. 所以回到2:lim(1-1/x)^x=lim exp(ln((1-1/x)^x)))=exp(-1)=e^-1
5. 回到1: lim(1-1/x)^(-x)=lim1/((1-1/x)^x)=1/e^-1=e
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
北极雪wsy

2019-12-21 · TA获得超过16.1万个赞
知道大有可为答主
回答量:10.3万
采纳率:74%
帮助的人:9464万
展开全部
这个问题的证明比较复杂,需要用到高等数学,符号较复杂,难以写出
当x趋于正无穷大或负无穷大时,“1加x分之一的x次方”这个函数表达式(1+1/x)^x的极限就等于e,用公式表示,即:

lim(1+1/x)^x=e
(x趋于±∞)

实际上e就是欧拉通过这个极限而发现的,它是个无限不循环小数,其值等于2.71828……。以e为底的对数叫做自然对数,用符号“ln”表示。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
嘘白
2019-09-23
知道答主
回答量:40
采纳率:0%
帮助的人:3.2万
展开全部
因为x趋于0,lim[(1+x)^(1/x)] 等同于 x →∞ lim(1+1/x)^x,这个式子 就e的定义
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(8)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式