1个回答
展开全部
解:延长DC交BA于F
设AE与BC的交点为G,则
∠BFC=∠BAD+∠ADF
∠EGC=∠BGA=180°-∠ABC-∠BAE
∠BCD=∠ABC+∠BFC
∵AE平分∠BAD,CE平分∠BCD
∴∠BAE=1/2∠BAD
∠BCE=1/2∠BCD
又∵∠AEC=180°-∠BCE-∠EGC
=180°-1/2BCD-(180° -∠ABC-1/2∠BAD)
=180°-1/2∠ABC-1/2∠BAD-1/2∠ADC-180°+∠ABC+1/2BAD
=1/2∠ABC-1/2∠ADC
设AE与BC的交点为G,则
∠BFC=∠BAD+∠ADF
∠EGC=∠BGA=180°-∠ABC-∠BAE
∠BCD=∠ABC+∠BFC
∵AE平分∠BAD,CE平分∠BCD
∴∠BAE=1/2∠BAD
∠BCE=1/2∠BCD
又∵∠AEC=180°-∠BCE-∠EGC
=180°-1/2BCD-(180° -∠ABC-1/2∠BAD)
=180°-1/2∠ABC-1/2∠BAD-1/2∠ADC-180°+∠ABC+1/2BAD
=1/2∠ABC-1/2∠ADC
更多追问追答
追问
∠EGC=∠BGA这个怎么相等的呢
追答
对顶角相等,∠EGC和∠BGA是对顶角
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询