如何证明概率的有限可加性?
1个回答
展开全部
可列可加性与有限可加性主要有以下区别:
1、本性质的区别:证明过程是用概率的可列可加性来证明概率的有限可加性。即可列可加性可以证明得出有限可加性。
2、定义区别:可列可加指的是无穷个事件的∪,有限个两两互不相容事件的和事件的概率,等于每个事件概率的和。
3、条件不同:概率的可列可加性有的是作为假设条件出现,也有作为基本性质出现。用概率的可列可加性来证明概率的有限可加性。并且令第n+1个及之后的事件为空,就可得到有限个事件的∪。
发展过程
起源
概率论是研究随机现象数量规律的数学分支,是一门研究事情发生的可能性的学问。但是最初概率论的起源与赌博问题有关。16世纪,意大利的学者吉罗拉莫·卡尔达诺(Girolamo Cardano)开始研究掷骰子等赌博中的一些简单问题。
概率与统计的一些概念和简单的方法,早期主要用于赌博和人口统计模型。随着人类的社会实践,人们需要了解各种不确定现象中隐含的必然规律性,并用数学方法研究各种结果出现的可能性大小,从而产生了概率论,并使之逐步发展成一门严谨的学科。
概率与统计的方法日益渗透到各个领域,并广泛应用于自然科学、经济学、医学、金融保险甚至人文科学中。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询