高中数学第九。十题
1个回答
展开全部
第9题
由题意,在直角三角形MF1F2中,
MF1+MF2=F1F2cos15 º+F1F2sin15 º
=√2F1F2sin60º
由椭圆的定义可知,MF1+MF2=2a,F1F2=2c,
∴2a=2c×√3,
即c/a=√3/3,
∴椭圆的离心率为√3/3.
第10题
利用参数方程知识和三角形函数的范围
设P(acosθ,bsinθ)
在椭圆上存在一点P 满足线段AP的垂直平分线过F,则
PF=AF=a^2/c-c
PF=√((acosθ-c)^2+(bsinθ)^2)
e=a/c
a^2=b^2+c^2
联合解得
cosθ=(e^2+e-1)/e^2
而-1≤cosθ≤1
所以1/2≤e≤1
因a>b>0
所以1/2≤e<1
很高兴为您解答,祝你学习进步!
有不明白的可以追问!如果您认可我的回答,请选为满意答案,并点击好评,谢谢!
由题意,在直角三角形MF1F2中,
MF1+MF2=F1F2cos15 º+F1F2sin15 º
=√2F1F2sin60º
由椭圆的定义可知,MF1+MF2=2a,F1F2=2c,
∴2a=2c×√3,
即c/a=√3/3,
∴椭圆的离心率为√3/3.
第10题
利用参数方程知识和三角形函数的范围
设P(acosθ,bsinθ)
在椭圆上存在一点P 满足线段AP的垂直平分线过F,则
PF=AF=a^2/c-c
PF=√((acosθ-c)^2+(bsinθ)^2)
e=a/c
a^2=b^2+c^2
联合解得
cosθ=(e^2+e-1)/e^2
而-1≤cosθ≤1
所以1/2≤e≤1
因a>b>0
所以1/2≤e<1
很高兴为您解答,祝你学习进步!
有不明白的可以追问!如果您认可我的回答,请选为满意答案,并点击好评,谢谢!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询