什么是映射

是法则f还是非空集合A,B??????????????... 是法则f还是非空集合A,B?????????????? 展开
匿名用户
2013-07-18
展开全部

数学定义

 

设A、B是两个非空集合,如果存在一个法则f,使得对A中的每个元素a,按法则f,在B中有唯一确定的元素b与之对应,则称f为从A到B的映射,记作f:A→B。

其中,b称为元素a在映射f下的像,记作:b=f(a); a称为b关于映射f的原像。集合A中所有元素的像的集合记作f(A)。

映射,或者射影,在数学及相关的领域还用于定义函数。函数是从非空数集到非空数集的映射,而且只能是一对一映射或多对一映射。

在很多特定的数学领域中,这个术语用来描述具有与该领域相关联的特定性质的函数,例如,在拓扑学中的连续函数,线性代数中的线性变换等等。

如果将函数定义中两个集合从非空集合扩展到任意元素的集合(不限于数),我们可以得到映射的概念:

映射是数学中描述了两个集合元素之间一种特殊的对应关系的。

按照映射的定义,下面的对应都是映射。

设A={1,2,3,4},B={3,5,7,9},集合A中的元素x按照对应关系“乘2加1”和集合B中的元素对应,这个对应是集合A到集合B的映射。

设A=N*,B={0,1},集合A中的元素按照对应关系“x除以2得的余数”和集合B中的元素对应,这个对应是集合A到集合B的映射。

设A={x|x是三角形},B={y|y>0},集合A中的元素x按照对应关系“计算面积”和集合B中的元素对应,这个对应是集合A到集合B的映射。

设A=R,B={直线上的点},按照建立数轴的方法,是A中的数x与B中的点P对应,这个对应是集合A到集合B的映射。

设A={P|P是直角坐标系中的点},B={(x,y)|x∈R,y∈R},按照建立平面直角坐标系的方法,是A中的点P与B中的有序实数对(x,y)对应,这个对应是集合A到集合B的映射。

映射在不同的领域有很多的名称,它们的本质是相同的。如函数,算子等等。这里要说明,函数是两个数集之间的映射,其他的映射并非函数。

——映射(双射)是映射中特殊的一种,即两集合元素间的唯一对应,通俗来讲就是一个对一个(多对一)。

(由定义可知,图1中所示对应关系不是映射,而其它三图中所示对应关系就是映射。)

或者说,设A B是两个非空的集合,如果按,某一个确定的对应关系f.使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个函数


映射的成立条件简单的表述就是下面的两条:

1.定义域的遍历性:X中的每个元素x在映射的值域中都有对应对象

2.对应的唯一性:定义域中的一个元素只能与映射值域中的一个元素对应

映射的分类:

映射的不同分类是根据映射的结果进行的,从下面的三个角度进行:

1.根据结果的几何性质分类:满射(到上)与非满射(内的)

2.根据结果的分析性质分类:单射(一一的)与非单射

3.同时考虑几何与分析性质:满的单射(一一对应)。



集合AB的元素个数为m,n,

那么,从集合A到集合B的映射的个数为n的m次

■函数和映射,满映射和单映射的区别

函数是数集到数集映射,并且这个映射是“满”的。

即满映射f: A→B是一个函数,其中原像集A称做函数的定义域,像集B称做函数的值域。

“数集”就是数字的集合,可以是整数、有理数、实数、复数或是它们的一部分等等。

“映射”是比函数更广泛一些的数学概念,它就是一个集合到另一个集合的一种确定的对应关系。即,若f是集合A到集合B的一个映射,那么对A中的任何一个元素a,集合B中都存在唯一的元素b与a对应。我们称a是原像,b是像。写作f: A→B,元素关系就是b = f(a).

一个映射f: A→B称作“满”的,就是说对B中所有的元素,都存在A中的原像。

在函数的定义中不要求是满射,就是说值域应该是B的子集。(这个定义来源于一般中学中的讲法,实际上许多数学书上并不一定定义函数是满射。)

象集中每个元素都有原象的映射称为满射 :

即B中的任意一元素y都是A中的像,则称f为A到B上的满射,强调f(A)=B(B的原像可以多个)

原象集中不同元素的象不同的映射称为单射 :

若A中任意两个不同元素x1≠x2,它们的像f(x1)≠f(x2),则称f为A到B的单射,强调f(A)是B的真子集

单射和满射可共同决定为一一双射。

追问
额。好多,但是我都看了。我现在想问一个问题:简单地说映射(f:A→B)就是那个法则f对吧?(法则f就是(f:A→B)的映射对吧)
追答
可以,不过记住只能是“一对一”或“多对一”
高骏(北京)科技有限公司
2020-04-29 广告
公网传输编解码建议选择高骏(北京)科技有限公司,价格合理,品质高服务好。高骏(北京)科技有限公司简称高骏科技。Cogent(高骏科技)创立于 2011年,始终致力于核心技术和创新性产品的自主研发,目前已成为国际知名的无线视音频传输与通信产品... 点击进入详情页
本回答由高骏(北京)科技有限公司提供
流年离殇77
2013-07-28
知道答主
回答量:8
采纳率:0%
帮助的人:3.5万
展开全部
设A、B是两个非空集合,如果存在一个法则f,使得对A中的每个元素a,按法则f,在B中有唯一确定的元素b与之对应,则称f为从A到B的映射,记作f:A→B。
其中,b称为元素a在映射f下的象,记作:b=f(a); a称为b关于映射f的原像。集合A中所有元素的像的集合成为映射f的值域,记作f(A)。
映射,或者射影,在数学及相关的领域还用于定义函数。函数是从非空数集到非空数集的映射,而且只能是一对一映射或多对一映射。
在很多特定的数学领域中,这个术语用来描述具有与该领域相关联的特定性质的函数,例如,在拓扑学中的连续函数,线性代数中的线性变换等等。
如果将函数定义中两个集合从非空集合扩展到任意元素的集合(不限于数),我们可以得到映射的概念:
映射是数学中描述了两个集合元素之间一种特殊的对应关系的。
按照映射的定义,下面的对应都是映射。

设A={1,2,3,4},B={3,5,7,9},集合A中的元素x按照对应关系“乘2加1”和集合B中的元素对应,这个对应是集合A到集合B的映射。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-07-18
展开全部
设A、B是两个非空集合,如果存在一个法则f,使得对A中的每个元素a,按法则f,在B中有唯一确定的元素b与之对应,则称f为从A到B的映射,记作f:A→B。
追问
我现在想问一个问题:简单地说映射(f:A→B)就是那个法则f对吧?(法则f就是(f:A→B)的映射对吧)
追答
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
stirling13
2013-07-27 · TA获得超过207个赞
知道答主
回答量:196
采纳率:0%
帮助的人:174万
展开全部
什么是三口之家?爸爸、妈妈、孩子,缺一不可。映射也一样,f, A, B都不能少,放在一起叫映射,只是有时候为了说话简便,直接说映射f如何如何。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式