第三问求解
展开全部
设二次函数为:y=ax^2+bx+m
经过点(1,0),(2,1),代入得到:
a+b+m=0 ===> a+b=-m ===> 2a+2b=-2m
4a+2b+m=1 ===> 4a+2b=1-m
两式相减得到:2a=(1-m)+2m=m+1
所以,a=(m+1)/2
代入得到:b=-a-m=-(m+1)/2-m=-(3m+1)/2
所以:y=[(m+1)/2]x^2-[(3m+1)/2]x+m
它与直线y=-x+1相交,有两个交点,设为(x1,y1)和(x2,y2)
联立得到:[(m+1)/2]x^2-[(3m+1)/2]x+m=-x+1
===> (m+1)x^2-(3m+1)x+2m=-2x+2
===> (m+1)x^2-(3m+1)x+2x+2m-2=0
===> (m+1)x^2-(3m-1)x+2(m-1)=0
上述一元二次方程的两个实数根就是直线与抛物线两个交点的横坐标
所以:x1+x2=(3m-1)/(m+1),x1x2=2(m-1)/(m+1)
那么:(x1-x2)^2=(x1+x2)^2-4x1x2
=[(3m-1)/(m+1)]^2-8(m-1)/(m+1)
=[(3m-1)^2-8(m-1)(m+1)]/(m+1)^2
=(9m^2-6m+1-8m^2+8)/(m+1)^2
=(m^2-6m+9)/(m+1)^2
而,y1=-x1+1,y2=-x2+1
所以,y1-y2=(-x1+1)-(-x2+1)=-(x1-x2)
所以,(y1-y2)^2=[-(x1-x2)]^2=(x1-x2)^2
那么,这两个交点之间的线段长度=√[(x1-x2)^2+(y1-y2)^2]
=√[2(x1-x2)^2]=2√2
===> (x1-x2)^2=4
===> (m^2-6m+9)/(m+1)^2=4
===> m^2-6m+9=4(m+1)^2=4m^2+8m+4
===> 3m^2+14m-5=0
===> (3m-1)(m+5)=0
===> m=1/3,或者m=-5.
经过点(1,0),(2,1),代入得到:
a+b+m=0 ===> a+b=-m ===> 2a+2b=-2m
4a+2b+m=1 ===> 4a+2b=1-m
两式相减得到:2a=(1-m)+2m=m+1
所以,a=(m+1)/2
代入得到:b=-a-m=-(m+1)/2-m=-(3m+1)/2
所以:y=[(m+1)/2]x^2-[(3m+1)/2]x+m
它与直线y=-x+1相交,有两个交点,设为(x1,y1)和(x2,y2)
联立得到:[(m+1)/2]x^2-[(3m+1)/2]x+m=-x+1
===> (m+1)x^2-(3m+1)x+2m=-2x+2
===> (m+1)x^2-(3m+1)x+2x+2m-2=0
===> (m+1)x^2-(3m-1)x+2(m-1)=0
上述一元二次方程的两个实数根就是直线与抛物线两个交点的横坐标
所以:x1+x2=(3m-1)/(m+1),x1x2=2(m-1)/(m+1)
那么:(x1-x2)^2=(x1+x2)^2-4x1x2
=[(3m-1)/(m+1)]^2-8(m-1)/(m+1)
=[(3m-1)^2-8(m-1)(m+1)]/(m+1)^2
=(9m^2-6m+1-8m^2+8)/(m+1)^2
=(m^2-6m+9)/(m+1)^2
而,y1=-x1+1,y2=-x2+1
所以,y1-y2=(-x1+1)-(-x2+1)=-(x1-x2)
所以,(y1-y2)^2=[-(x1-x2)]^2=(x1-x2)^2
那么,这两个交点之间的线段长度=√[(x1-x2)^2+(y1-y2)^2]
=√[2(x1-x2)^2]=2√2
===> (x1-x2)^2=4
===> (m^2-6m+9)/(m+1)^2=4
===> m^2-6m+9=4(m+1)^2=4m^2+8m+4
===> 3m^2+14m-5=0
===> (3m-1)(m+5)=0
===> m=1/3,或者m=-5.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询