用数学归纳法证明x2n+1次方+Y2N+1次方能被X+Y整除

jsxiaoshunzi
2013-07-19 · TA获得超过199个赞
知道小有建树答主
回答量:124
采纳率:0%
帮助的人:98.1万
展开全部
题目中x y 应该为整数吧
当n=0时,
x^(2n+1)+y^(2n+1)=x+y 能被整除
当n=1时,
x^(2n+1)+y^(2n+1)=x^3+y^3=(x+y)(x^2+Y^2-xy)
当n=2时,
x^(2n+1)+y^(2n+1)=x^3+y^3=(x^3+y^3)(x^2+Y^2)-(Y^3*x^2+x^3*y^2)
=(x^3+y^3)(x^2+Y^2)-x^2*y^2(x+y)
两个数都能被x+y整除
假设当n=k是,满足条件
x^(2n+1)+y^(2n+1)=x^(2k+1)+y^(2k+1)=((x+y)*m m为整数
假设当n=k-1是,满足条件
x^(2n+1)+y^(2n+1)=x^(2k+1)+y^(2k+1)=((x+y)*p p为整数

那么当n=k+1时

x^(2n+1)+y^(2n+1)=x^(2k+3)+y^(2k+3)
=(x^(2k+1)+y^(2k+1))*(x^2+y^2)-(x^(2k+1)*y^2+y^(2k+1)*x^2)
=m*(x^2+y^2)*(x+y)-x^2*y^2*(x^(2k-1)+y^(2k-1))
=m*(x^2+y^2)*(x+y)-p*x^2*y^2*(x+y)
上述两个都能被x+y整除

所以结论成立
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式