高中解析几何求详细步骤
展开全部
1\e=c/a=1/2,c=a/2,b^2=a^2-c^2=√3a/2,
原点(圆心)至直线距离,即至切线距离为圆半径R,
R=|0-0+√6|/√(1+1)=√3,
R=√3a/2=√3,
∴a=2,b=√3,
∴椭圆方程为:x^2/4+y^2/3=1.
2、椭圆右准线方程为:x=a^2/c=4,
∴P点是右准线和X轴的交点,
分别从A、B和E向右准线作垂线AM、BN、EH,
则AM//BN//EH,
△PBN∽△PEH,
|BN|/|EH|=|PN|/|PH|,
A和B关于X轴对称,∴|PN|=|PM|,
∵四边形AMNB是矩形形,
∴|BN|=|AM|,
∴|AM|/|EH|=|PM|/|PH|,
而根据平行线比例线段性质,
||PM|/|PH|=|AQ/|QE|,
∴|AM|/|EH=|AQ/|QE|,
|AM|/|AQ|=|EH|/|QE|,
∴|AQ|/|AM|=|EQ|/|EH|,
根据椭圆的第二定义可知,
Q点是椭圆的右焦点,
∴直线AE与x轴相交于定点Q就是椭圆的右焦点。
希望采纳
原点(圆心)至直线距离,即至切线距离为圆半径R,
R=|0-0+√6|/√(1+1)=√3,
R=√3a/2=√3,
∴a=2,b=√3,
∴椭圆方程为:x^2/4+y^2/3=1.
2、椭圆右准线方程为:x=a^2/c=4,
∴P点是右准线和X轴的交点,
分别从A、B和E向右准线作垂线AM、BN、EH,
则AM//BN//EH,
△PBN∽△PEH,
|BN|/|EH|=|PN|/|PH|,
A和B关于X轴对称,∴|PN|=|PM|,
∵四边形AMNB是矩形形,
∴|BN|=|AM|,
∴|AM|/|EH|=|PM|/|PH|,
而根据平行线比例线段性质,
||PM|/|PH|=|AQ/|QE|,
∴|AM|/|EH=|AQ/|QE|,
|AM|/|AQ|=|EH|/|QE|,
∴|AQ|/|AM|=|EQ|/|EH|,
根据椭圆的第二定义可知,
Q点是椭圆的右焦点,
∴直线AE与x轴相交于定点Q就是椭圆的右焦点。
希望采纳
更多追问追答
追问
b^2=a^2-c^2=√3a/2, 怎么来的?
追答
根据椭圆和离心率的定义
因为离心率=1/2所以c/a=1/2,c=a/2
因为椭圆所以a^2=c^2+b^2
所以b^2=a^2-c^2=a^2-a^2/4=3c^2/4
所以b=√3a/2
刚才漏打了个“b=”
请采纳谢谢
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
在构建大模型训练语料时,我们上海华然企业咨询有限公司注重数据的广泛性与代表性。语料涵盖了财经新闻、行业动态、政策解读、科技前沿、市场分析等多领域信息,确保模型能够学习到丰富的语言模式和知识背景。每条语料经过精心筛选与清洗,确保无冗余、无偏见...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询