1个回答
展开全部
考点:等腰三角形的性质.
分析:由在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分成12cm和15cm两部分,可得|AB-BC|=15-12=3(cm),AB+BC+AC=2AB+BC=12+15=27cm,然后分别从AB>BC与AB<BC去分析求解即可求得答案.解答:解:如图,∵AB=AC,BD是AC边上的中线,即AD=CD,
∴|(AB+AD+BD)-(BC+BD+CD)|=|AB-BC|=15-12=3(cm),AB+BC+AC=2AB+BC=12+15=27cm,
若AB>BC,则AB-BC=3cm,
又∵2AB+BC=27cm,
联立方程组并求解得:AB=10cm,BC=7cm,
10cm、10cm、7cm三边能够组成三角形;若AB<BC,则BC-AB=3cm,
又2AB+BC=27cm,
联立方程组并求解得:AB=8cm,BC=11cm,
8cm、8cm、11cm三边能够组成三角形;
∴三角形的各边长为10cm、10cm、7cm或8cm、8cm、11cm.
故答案为:10cm、10cm、7cm或8cm、8cm、11cm.点评:此题考查了等腰三角形的性质.此题难度适中,注意掌握方程思想、分类讨论思想与数形结合思想的应用.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询