已知f(x)=x2+2x+1,若存在实数t,当x∈[1,m]时,f(x+t)≤x恒成立,则实数m的最大值是 如图 25

大括号里的1·m<=s^2是韦达定理的性质吗?这一步什么意思?... 大括号里的1·m<=s^2是韦达定理的性质吗?这一步什么意思? 展开
 我来答
穗子和子一
高赞答主

2013-07-19 · 点赞后记得关注哦
知道大有可为答主
回答量:3.2万
采纳率:76%
帮助的人:8354万
展开全部
因为 f(x+t)<=x恒成立,可得f1(x)=x^2+(2t+1)x+(t+1)^2<=0
b^2-4ac>=0 可得:t<=-3/4 (1)
因为抛物线开口向上且在[1,m]范围内<=0
所以根x1<=1 即f1(1)<0,得-3<=t<=-1
x2>=m x2=[-2t-1+根号(-4t-3)]/2>=m
因为[-2t-1+根号(-4t-3)]/2 是减函数,t最小时m最大
所以t=-3代入得 m<=4
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式