展开全部
对题目进行分析,因含有a²与b²,想到将其转化为完全平方式。
式中含有-2a,故得(a-1)²,同理得(b-2)²
展开有a²-2a+1+b²-4b+4=a²+b²-2a-4b+5
与原式差1,6=5+1
由此原式=(a-1)²+(b-2)²+1
∵(a-1)²+(b-2)²+1恒大于零,
∴不论a、b为任何实数,a²+b²-2a-4b+6的值总为正数
式中含有-2a,故得(a-1)²,同理得(b-2)²
展开有a²-2a+1+b²-4b+4=a²+b²-2a-4b+5
与原式差1,6=5+1
由此原式=(a-1)²+(b-2)²+1
∵(a-1)²+(b-2)²+1恒大于零,
∴不论a、b为任何实数,a²+b²-2a-4b+6的值总为正数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:a²+b²-2a-4b+6
=a²-2a+1+b²-4b+4+1
=(a-1)²+(b-2)²+1
因为(a-1)²+(b-2)²+1大于等于0
所以a²+b²-2a-4b+6为正数。
=a²-2a+1+b²-4b+4+1
=(a-1)²+(b-2)²+1
因为(a-1)²+(b-2)²+1大于等于0
所以a²+b²-2a-4b+6为正数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:
a²+b²﹣2a﹣4b+6
=a²﹣2a+1+b²﹣4b+4+1
=(a-1)²+(b-2)²+1
≧1
即证得 无论a、b为任何实数,a²+b²﹣2a﹣4b+6的值总为正数
关键就是把6转化成1+4+1 那样就可以和a,b配方合并
有什么不明白可以追加
望采纳呀^^
a²+b²﹣2a﹣4b+6
=a²﹣2a+1+b²﹣4b+4+1
=(a-1)²+(b-2)²+1
≧1
即证得 无论a、b为任何实数,a²+b²﹣2a﹣4b+6的值总为正数
关键就是把6转化成1+4+1 那样就可以和a,b配方合并
有什么不明白可以追加
望采纳呀^^
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a²+b²-2a-4b+6
=a²-2a+1+b²-4b+4+1
=(a-1)²+(b-2)²+1
因为(a-1)²≥0
(b-2)²≥0(平方具有非负性)
所以(a-1)²+(b-2)²+1≥1
=a²-2a+1+b²-4b+4+1
=(a-1)²+(b-2)²+1
因为(a-1)²≥0
(b-2)²≥0(平方具有非负性)
所以(a-1)²+(b-2)²+1≥1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a²+b²﹣2a﹣4b+6=(a-1)^2+(b-2)^2+1
因为(a-1)^2大于等于0 且 (b-2)^2大于等于0
所以(a-1)^2+(b-2)^2+1 大于0
综上所述:
不论a、b为任何实数,a²+b²﹣2a﹣4b+6的值总为正数
因为(a-1)^2大于等于0 且 (b-2)^2大于等于0
所以(a-1)^2+(b-2)^2+1 大于0
综上所述:
不论a、b为任何实数,a²+b²﹣2a﹣4b+6的值总为正数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询