1个回答
展开全部
syms a b d
a=solve('1.4/sqrt(1.5^2-1.4^2)=cos(b)*d*cos(a)/(2*1.5+d*sin(a))','a')
结果:
a =
atan((-3.+10000000000000000000000000000000.*cos(b)*(30000000000000000000000000000000.*cos(b)+(.10000000000000000000000000000000e63*cos(b)^2*d^2-.60827586206896551724137931034485e64+.67586206896551724137931034482761e63*d^2)^(1/2))/(.10000000000000000000000000000000e63*cos(b)^2+.67586206896551724137931034482761e63))/d,25997347344787260840520671338471.*(30000000000000000000000000000000.*cos(b)+(.10000000000000000000000000000000e63*cos(b)^2*d^2-.60827586206896551724137931034485e64+.67586206896551724137931034482761e63*d^2)^(1/2))/(.10000000000000000000000000000000e63*cos(b)^2+.67586206896551724137931034482761e63)/d)
atan((-3.+10000000000000000000000000000000.*cos(b)*(30000000000000000000000000000000.*cos(b)-1.*(.10000000000000000000000000000000e63*cos(b)^2*d^2-.60827586206896551724137931034485e64+.67586206896551724137931034482761e63*d^2)^(1/2))/(.10000000000000000000000000000000e63*cos(b)^2+.67586206896551724137931034482761e63))/d,25997347344787260840520671338471.*(30000000000000000000000000000000.*cos(b)-1.*(.10000000000000000000000000000000e63*cos(b)^2*d^2-.60827586206896551724137931034485e64+.67586206896551724137931034482761e63*d^2)^(1/2))/(.10000000000000000000000000000000e63*cos(b)^2+.67586206896551724137931034482761e63)/d)
>>
syms a b d
b=solve('1.4/sqrt(1.5^2-1.4^2)=cos(b)*d*cos(a)/(2*1.5+d*sin(a))','b')
结果:
b =
acos(2.5997347344787260840520671338471*(3.+d*sin(a))/d/cos(a))
d=solve('1.4/sqrt(1.5^2-1.4^2)=cos(b)*d*cos(a)/(2*1.5+d*sin(a))','d')
结果:
d =
77992042034361782521562014015413./(-25997347344787260840520671338471.*sin(a)+10000000000000000000000000000000.*cos(b)*cos(a))
>>
说明:a=α,b=β,d=d
a=solve('1.4/sqrt(1.5^2-1.4^2)=cos(b)*d*cos(a)/(2*1.5+d*sin(a))','a')
结果:
a =
atan((-3.+10000000000000000000000000000000.*cos(b)*(30000000000000000000000000000000.*cos(b)+(.10000000000000000000000000000000e63*cos(b)^2*d^2-.60827586206896551724137931034485e64+.67586206896551724137931034482761e63*d^2)^(1/2))/(.10000000000000000000000000000000e63*cos(b)^2+.67586206896551724137931034482761e63))/d,25997347344787260840520671338471.*(30000000000000000000000000000000.*cos(b)+(.10000000000000000000000000000000e63*cos(b)^2*d^2-.60827586206896551724137931034485e64+.67586206896551724137931034482761e63*d^2)^(1/2))/(.10000000000000000000000000000000e63*cos(b)^2+.67586206896551724137931034482761e63)/d)
atan((-3.+10000000000000000000000000000000.*cos(b)*(30000000000000000000000000000000.*cos(b)-1.*(.10000000000000000000000000000000e63*cos(b)^2*d^2-.60827586206896551724137931034485e64+.67586206896551724137931034482761e63*d^2)^(1/2))/(.10000000000000000000000000000000e63*cos(b)^2+.67586206896551724137931034482761e63))/d,25997347344787260840520671338471.*(30000000000000000000000000000000.*cos(b)-1.*(.10000000000000000000000000000000e63*cos(b)^2*d^2-.60827586206896551724137931034485e64+.67586206896551724137931034482761e63*d^2)^(1/2))/(.10000000000000000000000000000000e63*cos(b)^2+.67586206896551724137931034482761e63)/d)
>>
syms a b d
b=solve('1.4/sqrt(1.5^2-1.4^2)=cos(b)*d*cos(a)/(2*1.5+d*sin(a))','b')
结果:
b =
acos(2.5997347344787260840520671338471*(3.+d*sin(a))/d/cos(a))
d=solve('1.4/sqrt(1.5^2-1.4^2)=cos(b)*d*cos(a)/(2*1.5+d*sin(a))','d')
结果:
d =
77992042034361782521562014015413./(-25997347344787260840520671338471.*sin(a)+10000000000000000000000000000000.*cos(b)*cos(a))
>>
说明:a=α,b=β,d=d
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |