25个回答
展开全部
需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。数学基础知识蕴含着处理智能问题的基本思想与方法,也是理解复杂算法的必备要素。今天的种种人工智能技术归根到底都建立在数学模型之上,要了解人工智能,首先要掌握必备的数学基础知识。线性代数将研究对象形式化,概率论描述统计规律。
需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。
需要掌握至少一门编程语言,比如C语言,MATLAB之类。毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。
拓展资料:
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。2017年12月,人工智能入选“2017年度中国媒体十大流行语”。
需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。
需要掌握至少一门编程语言,比如C语言,MATLAB之类。毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。
拓展资料:
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。2017年12月,人工智能入选“2017年度中国媒体十大流行语”。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
需要高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2019-08-15 · IT、电竞电商、设计、动漫专业对口升学
关注
展开全部
人工智能促进经济发展,国家战略支持,应用领域广阔,是非常值得参与的领域,笔者也正从事该领域,感觉希望无限
可以到这边看看,有这个专业
可以到这边看看,有这个专业
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2019-08-08 · IT、电竞电商、设计、动漫专业对口升学
关注
展开全部
目前,正值人工智能市场的蓝海阶段,不仅人才稀缺,而且岗位竞争力小,对于想快速入门、取得高薪和就职名企的学员而言,无疑是一条捷径
可以到这边看看,毕竟互联网it学校
可以到这边看看,毕竟互联网it学校
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2019-06-21 · 大数据人才培养的机构
加米谷大数据科技
成都加米谷大数据科技有限公司是一家专注于大数据人才培养的机构。公司由来自华为、京东、星环、勤智等国内知名企业的多位技术大牛联合创办。面向社会提供大数据、人工智能等前沿技术的培训业务。
向TA提问
关注
展开全部
人工智能(Artificial Intelligence),即AI,它是计算机科学的一个分支,它是研究、研发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
介绍几种机器学习的算法,为以后的深度学习打基础:
算法一:逻辑回归(Logistic Regression, LR)
它为逻辑回归分析,是分类和预测算法中的一种。采用的是监督学习的方式,通过分析历史数据特征来对未来事件发生的概率进行预测。
算法二:决策树
它的思想是:寻找一种算法,计算机可以根据该算法完成像if-else结构一样从根开始不断判断选择到叶子节点的树,这样的树就称为决策树。
该方法的重点就在于如何从这么多的特征中选择出有价值的,并且按照最好的顺序由根到叶。
算法三:朴素贝叶斯
在机器学习分类算法中,朴素贝叶斯和绝大多数的分类算法不同。贝叶斯的思想可以等效为:先验概率+数据=后验概率。
机器学习算法是构架深度学习神经网络的基础,只有我们打好了基础,我们才能更好的学习,深度学习的精髓。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询