
如图,在RT△ABC中,∠ACB为90°,CD⊥AB,cos∠BCD=2/3,BD=1,则AB的长是
2个回答
展开全部
解:∵cos∠BCD=CD/BC=2:3,
则设CD=2x,BC=3x,
根据勾股定理得,1²+(2x)²=(3x)²√,
∴x=√5/5 .
由于∠BCD=∠BAC,
所以设AC=2y,AB=3y,根据勾股定理得,
(3y)²-(2y)²=(3×√5/5)²
y=3/5
AB=3/5×3=9/5 .
很高兴为您解答,祝你学习进步
有不明白的可以追问!如果您认可我的回答。
请点击下面的【选为满意回答】按钮,谢谢!
则设CD=2x,BC=3x,
根据勾股定理得,1²+(2x)²=(3x)²√,
∴x=√5/5 .
由于∠BCD=∠BAC,
所以设AC=2y,AB=3y,根据勾股定理得,
(3y)²-(2y)²=(3×√5/5)²
y=3/5
AB=3/5×3=9/5 .
很高兴为您解答,祝你学习进步
有不明白的可以追问!如果您认可我的回答。
请点击下面的【选为满意回答】按钮,谢谢!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询