如图,AB=AC,AD=AE,BD=CE,BD与CE相交于点O。求证:∠CAB=∠EAD=∠BOC
2个回答
2013-07-21 · 知道合伙人教育行家
无脚鸟╰(⇀‸↼)╯
知道合伙人教育行家
向TA提问 私信TA
知道合伙人教育行家
采纳数:6742
获赞数:132162
现在为上海海事大学学生,在学习上有一定的经验,擅长数学。
向TA提问 私信TA
关注
展开全部
证明:
∵AB=AC,AD=AE,BD=CE
∴△ABD≌△ACE (SSS)
∴∠BAD=∠CAE,∠B=∠C
∵∠CAB=∠BAD-∠CAD,∠EAD=∠CAE-∠CAD
∴∠CAB=∠EAD
∵∠BFC=∠CAB+∠B,∠BFC=∠BOC+∠C
∴∠CAB+∠B=∠BOC+∠C
∴∠CAB=∠BOC
∴∠CAB=∠EAD=∠BOC
∵AB=AC,AD=AE,BD=CE
∴△ABD≌△ACE (SSS)
∴∠BAD=∠CAE,∠B=∠C
∵∠CAB=∠BAD-∠CAD,∠EAD=∠CAE-∠CAD
∴∠CAB=∠EAD
∵∠BFC=∠CAB+∠B,∠BFC=∠BOC+∠C
∴∠CAB+∠B=∠BOC+∠C
∴∠CAB=∠BOC
∴∠CAB=∠EAD=∠BOC
更多追问追答
追问
谢谢
追答
那采纳吧
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询