求y=arctanx+arctan(1-x)/(1+x)的值
x∈(-无穷,-1)∪(-1,+无穷)tany=tan(arctanx+arctan(1-x)/(1+x))=1∵x≠-1,(1-x)/(1+x)≠-1,arctanx∈...
x∈(-无穷,-1)∪(-1,+无穷)
tany=tan(arctanx+arctan(1-x)/(1+x))=1
∵x≠-1,(1-x)/(1+x)≠-1,arctanx∈(-π/2,-π/4)∪(-π/4,π/2),arctan(1-x)/(1+x)∈(-π/2,-π/4)∪(-π/4,π/2) ,
又∵tany=1,
∴y=π/4或-3π/4.
最后一步不太懂。为什么会分两类呢
当x>-1时,y=π/4;当x<-1时,y=3π/4. 展开
tany=tan(arctanx+arctan(1-x)/(1+x))=1
∵x≠-1,(1-x)/(1+x)≠-1,arctanx∈(-π/2,-π/4)∪(-π/4,π/2),arctan(1-x)/(1+x)∈(-π/2,-π/4)∪(-π/4,π/2) ,
又∵tany=1,
∴y=π/4或-3π/4.
最后一步不太懂。为什么会分两类呢
当x>-1时,y=π/4;当x<-1时,y=3π/4. 展开
2个回答
展开全部
tany=1 y可以有无穷多个值 但是前面几步(arctanx∈(-π/2,-π/4)∪(-π/4,π/2),arctan(1-x)/(1+x)∈(-π/2,-π/4)∪(-π/4,π/2) ) 限制y大于-π 小于π y就只能是π/4或-3π/4
但这里答案省略arctanx∈(-π/2,-π/4)和arctan(1-x)/(1+x)∈(-π/2,-π/4)对应x<-1
arctanx∈(-π/4,π/2)和arctan(1-x)/(1+x)∈(-π/4,π/2) 对应x>-1
这样就清楚了吧?
还有不懂请追问
但这里答案省略arctanx∈(-π/2,-π/4)和arctan(1-x)/(1+x)∈(-π/2,-π/4)对应x<-1
arctanx∈(-π/4,π/2)和arctan(1-x)/(1+x)∈(-π/4,π/2) 对应x>-1
这样就清楚了吧?
还有不懂请追问
华瑞RAE一级代理商
2024-04-11 广告
2024-04-11 广告
impulse-4-xfxx是我们广州江腾智能科技有限公司研发的一款先进产品,它结合了最新的技术创新和市场需求。此产品以其卓越的性能和高效的解决方案,在行业内树立了新的标杆。impulse-4-xfxx不仅提升了工作效率,还为用户带来了更优...
点击进入详情页
本回答由华瑞RAE一级代理商提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |