两个简单的函数如何组成复合函数呢?
设y=f(μ),μ=φ(x),当x在μ=φ(x)的定义域Dφ中变化时,μ=φ(x)的值在y=f(μ)的定义域Df内变化,因此变量x与y之间通过变量μ形成的一种函数关系,记为
y=f(μ)=f[φ(x)]称为复合函数,其中x称为自变量,μ为中间变量,y为因变量(即函数)。
设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果Mx∩Du≠Ø,那么对于Mx∩Du内的任意一个x经过u;有唯一确定的y值与之对应,则变量x与y之间通过变量u形成的一种函数关系。
这种函数称为复合函数(composite function),记为:y=f[g(x)],其中x称为自变量,u为中间变量,y为因变量(即函数)。
复合函数通俗地说就是函数套函数,是把几个简单的函数复合为一个较为复杂的函数。复合函数中不一定只含有两个函数,有时可能有两个以上,如y=f(u),u=φ(v),v=ψ(x),则函数y=f{φ[ψ(x)]}是x的复合函数,u、v都是中间变量。
决定因素:
依y=f(u),u=φ(x)的单调性来决定。即“增+增=增;减+减=增;增+减=减;减+增=减”,可以简化为“同增异减”。
基本步骤:
判断复合函数的单调性的步骤如下:
⑴求复合函数的定义域。
⑵将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数)。
⑶判断每个常见函数的单调性。
⑷将中间变量的取值范围转化为自变量的取值范围。
⑸求出复合函数的单调性。