已知数列{log2(an-1)}(n∈N*)为等差数列,且a1=3,a3=9.(1)求数列{an}的通项公式;
(2)证明:1/(a2-a1+1)+1/(a3-a2)+...+1/(an+1-an)<1....
(2)证明:1/(a2-a1+1)+1/ (a3-a2)+...+1/(an+1-an)<1.
展开
1个回答
2013-07-24
展开全部
已知数列{bn}={log2(an-1)}为等差数列,且a1=3a3=9→b1=log2(3-1)=log2(2)=1,b2=log2(9-1)=log2(8)=3,公差d=3-1=2,∴bn=1 (n-1)×2,bn=2n-1→log2(an-1)=2n-1→(1).an=2^(2n-1)(2).a1=2^(1)=2,a2=2^(3)=8,a3=2^5=32,........ an=2^(2n-1),a(n 1)=2^(2n 1)∴1/(a2-a1) 1/(a3-a2) … 1/a(n 1)-an=1/(8-2) 1/(32-8) ...... 1/[2^(2n 1)-2^(2n-1)]=1/6 1/24 ...... 1/3×(2^(2n-1)=1/3×2 1/3×2^3 .....1/3×(2^(2n-1)<1/2 1/2^3 ........ 1/2^(2n-1)=(1/2)[1-(1/2)^2n]/[1-(1/2)^2]=(1/2)[1-(1/2)^2n]/(3/4)=(2/3)[1-(1/2)^2n] <2/3<1 证明: 因为 1/a(n 1)-an=1/[2^(n 1)-2^n]=1/(2^n) 所以左式=1/(2^1) ... 1/(2^n)=(1/2)^1 ... (1/2)^n[等比数列]=(1/2)[1-(1/2)^n]/(1-1/2)=1-(1/2)^n<1得证.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询