一元二次方程的根与系数的关系

1.已知关于X的一元二次方程X²=(m-1)x-2m²+m=0(m为实数)有两个实数根x1,x2。(1)求m的取值范围。(2)若x1²+x2... 1.已知关于X的一元二次方程X²=(m-1)x-2m²+m=0(m为实数)有两个实数根x1,x2。(1)求m的取值范围。(2)若x1²+x2²=2,求m。2.若a、b是方程x²-3x-5=0的两根,则代数式a²+2b²-3b的值是多少。(要写必要的演算步骤) 展开
370116
高赞答主

推荐于2017-11-25 · 你的赞同是对我最大的认可哦
知道顶级答主
回答量:9.6万
采纳率:76%
帮助的人:6.3亿
展开全部
解:要使方程x²+(m-1)x-2m²+m=0有实根,那么方程的判别式⊿≥0
⊿=b²-4ac, 这里a=1, b=m-1, c=-2m²+m
所以
⊿=(m-1)²-4×1×(-2m²+m)
=m²-2m+1+8m²-4m
=9m²-6m+1
=(3m-1)²
因为无论m取何实数,(3m-1)²都是非负数,(3m-1)²≥0
所以,m的取值是任意实数。

(2)
x1+x2=-(m-1)
x1x2=-2m²+m
所以x1²+x2²
=(x1+x2)²-2x1x2
=m²-2m+1+4m²-2m=2
5m²-4m-1=0
(5m+1)(m-1)=0
m=-1/5,m=1
2.a^2-3a-5=0
b^2-3b-5=0
a+b=3
a^2+2b^2-3b
=3a+5+2(3b+5)-3b
=3(a+b)+15
=3*3+15
=24
图为信息科技(深圳)有限公司
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。... 点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
robert2000420
2013-07-23 · TA获得超过823个赞
知道小有建树答主
回答量:611
采纳率:0%
帮助的人:583万
展开全部
  1. (1)移项:x²+(m-1)x-2m²+m=0

    有两个实数根所以:(m-1)²-4m>0

                                        m²+1-6m>0

                                       (m+3)(m-2)>0

m>2或m<-3

(2)一元二次方程ax²+bx+c=0中,x1+x2=-b/a,x1x2=c/a

x1²+x2²=(x1+x2)²-2x1x2

=(1-m)²-2(-2m²+m)

=m²+1-2m+4m²-2m

=5m²-4m+1

所以5m²-4m+1=2

5m²-4m-1=0

(m+1)(m-5)=0

m=-1或5

2.由题意a²=3x+5,b²=3x+5  -3b=5-x²

原式=3x+5+6x+10+5-x²

=-x²+9x+20

=-(x²-3x)+6x+20

=-5+6x+20

=6x+15

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
hbc3193034
2013-07-23 · TA获得超过10.5万个赞
知道大有可为答主
回答量:10.5万
采纳率:76%
帮助的人:1.4亿
展开全部
1.(1)关于X的一元二次方程X²+(m-1)x-2m²+m=0(m为实数)有两个实数根x1,x2,
∴△=(m-1)^2-4(-2m^2+m)=9m^2-6m+1=(3m-1)^2>=0,
∴m的取值范围是任意实数.
(2)x1+x2=1-m,x1x2=-2m^2+m,
∴x1^2+x2^2=(x1+x2)^2-2x1x2=(1-m)^2-2(-2m^2+m)=5m^2-4m+1=2,
∴5m^2-4m-1=0,
解得m=1或-1/5.

2.a、b是方程x²-3x-5=0的两根,
∴a+b=3,ab=-5,b^2-3b=5,①
a^2+b^2=(a+b)^2-2ab=9+10=19,②
①+②,a^2+2b^2-3b=24.
追问
m的取值范围是“R”是什么意思?????????????
追答
R是实数集。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
果实课堂
高粉答主

2020-02-08 · 繁杂信息太多,你要学会辨别
知道大有可为答主
回答量:7.4万
采纳率:81%
帮助的人:3870万
展开全部

一元二次方程根与系数的关系是什么

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式